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Abstract

This paper studies dynamic disclosure when the firm value evolves stochas-

tically over time. The presence of litigation risk, arising from the failure to

disclose unfavorable information, not only prompts bad news disclosures but

also crowds out good news disclosures. The manager’s disclosure policy and

the overall amount of information transmission depend on the persistence of

shocks, as managers may delay the release of negative information in an at-

tempt to bet for resurrection. From a policy perspective, we show that a

harsher legal environment may be a cost-effective way of stimulating informa-

tion transmission in settings where the nature of information is highly propri-

etary.
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1 Introduction

Firms receive information in an ongoing basis. Productivity shocks originate

from various sources, including innovation breakthroughs, the arrival of new

business opportunities, frictions in negotiations with labor unions, or break

downs of supply-chain relationships. Capital market perceptions pressure man-

agers to disclose their information frequently, because the stock price perfor-

mance is affected by the firm’s disclosures and lack thereof (see e.g., Graham,

Harvey and Rajgopal (2005)).

In light of this fact, a firm’s manager may feel inclined to disclose good

news, but disclosing good news is often costly.1 On the other hand, the man-

ager may be tempted to delay the release of bad news, hoping that the firm

prospects will improve at some point in the future. This bet for resurrection en-

tails costs too: remaining silent for a long time could affect the evolution of the

stock price, if investors grow wary that the manager might be concealing bad

news. In addition, concealing bad news is risky because the information might

be revealed by external sources, eventually triggering costly litigation. For

example, In 2012 the U.S. Justice Department announced GlaxoSmithKline

(GSK) had agreed to plead guilty and pay a $3 billion fine for withholding in-

formation about the cardiovascular risk of Avandia, GSK’s antidiabetes drug.2

Avandia’s problems began in 2007 when a study published in the New England

Journal of Medicine (Nissen and Wolski (2007)) found the drug carried a higher

risk of heart attacks than alternative drugs. The 2012 settlement stems from

claims made by four employees of GSK, who tipped off the U.S. government

about GSK’s concealment of two internal studies that preceded Nissen and

Wolski (2007). Avandia prescriptions and GSK’s stock price dropped sharply

ever since the publication of Nissen and Wolski (2007).3

1It often exacerbates competition; it might require certification by a third party. Also,
preparing and disseminating information often consumes management resources and entails
legal fees.

2In addition to the settlement with the U.S. state and federal governments,GSK was
forced to settle thousands of consumer lawsuits alleging that the drug had harmed their
health, which in total cost Glaxo nearly $2.4 billion.

3In 2014 Toyota was forced to pay $1.2 billion penalty to settle the criminal probe into
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This paper studies managers’ incentive to disclose information when with-

holding negative information is costly due to litigation risk. How is the man-

ager’s disclosure policy affected by the possibility of litigation? When do

managers delay the release of negative information? We provide a model that

highlights a fundamental asymmetry between positive and negative informa-

tion. When the market expects positive information to be disclosed, no news

is bad news. The market punishes a firm that does not release any informa-

tion. On the other hand, when the market expects negative information to be

disclosed, no news is good news and the market rewards the absence of disclo-

sure. This asymmetry is important because, unlike positive disclosures, which

cannot be imitated, silence is something that firms can imitate. Hence, the

presence of litigation risk allows firms to signal to the market good standing

by delaying the release of information. We show that this trade off determines

both the timing and content of disclosures.

We present a continuous time disclosure model. Specifically, we analyze

a disclosure game between the manager of a firm and a mass of buyers (the

market) when the firm’s asset value evolves stochastically over time. The

evolution of the asset value is described by a continuous-time Markov chain

that fluctuates between two possible states: low asset value and high asset

value. The manager can disclose his private information at any point in time

and as many time as he so wishes. Unraveling is not possible in equilibrium

because disclosing good news is costly (so the firm cannot do it continuously).

Concealing bad news is risky because there is a public news process, with

positive arrival rate when the asset value is low, that triggers costly litigation

if the manager did not disclose the information prior to the news arrival. The

market is competitive and sets the stock price of the firm continuously, based

on all publicly available information. The manager maximizes the present

value of the firm’s future stock prices, perhaps because his compensation, at

its handling of unintended acceleration problems that led to recalls of 8.1 million vehicles
in 2009. The attorney General Eric Holder called the settlement the largest U.S. criminal
penalty ever imposed on a car company and asserted “we can say for certain that Toyota
intentionally concealed information and misled the public about the safety issues behind
these recalls.”
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each point in time, is proportional to the firm’s stock price.

The presence of litigation risk suggests that managers will preempt bad

news, by voluntarily disclosing the bad news, if any, to avoid litigation costs.

This preemption strategy is well documented empirically (see e.g., Lev (1995),

Skinner (1994); Johnson, Kasznik and Nelson (2001)), but not well understood

in theory. In fact, the bad news preemption idea poses a conceptual difficulty:

if markets expected the manager to reveal bad news, at a given point in time,

then the manager’s silence would be interpreted as a clear sign that the man-

ager’s information is favorable, which would in turn lead to an upward jump

in the stock price. However, rewarding silence in this way cannot be part of

an equilibrium because, unlike good news, which can be verified, remaining

silent is something that all firms can do, including those in financial trouble.

Our analysis reveals that in equilibrium the firm can release bad news but

only probabilistically. Indeed, the equilibrium predicts that when falling stock

prices reach a certain threshold, the firm will reveal bad news with a prob-

ability that depends on the arrival intensity of the public news, the cost of

litigation, and the proprietary cost of disclosing good news. At that point,

the stock price will remain constant for some time, until bad news are finally

disclosed.

Litigation risk not only leads to preemption of bad news but, more impor-

tantly, it crowds-out disclosure of good news, because silence is interpreted,

per se, as a favorable signal of the firm’s prospects. The manager is able to

reveal good news in two ways: he can either explicitly disclose good news and

bear the cost, or signal the good news by remaining silent. There is a pecking

order : the manager prefers to use silence when the firm’s undervaluation is

moderate, and to use disclosure when the firm’s undervaluation is severe.

The presence of litigation risk may be desirable, even from the firm’s per-

spective. By creating a new communication mechanism that allows managers

to convey good news without disclosing them, the existence of litigation risk

allows the firm to save on proprietary disclosure costs.4 From a policy per-

4When adverse shocks are permanent the result is stronger: the manager may prefer a
high litigation risk to zero litigation risk. Numerical computations suggest that this result
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spective, this means that a harsher legal environment may be a cost-effective

way of improving information transmission, especially in settings where the

nature of information is highly proprietary.

Our model is stylized but tractable and allows us to study interesting ap-

plications.

In Section 5, we make litigation risk endogenous by considering the

incentives to monitor the firm. For example, the False Claims Act in the U.S.

encourages people with knowledge of suspected false claims to sue on the gov-

ernment’s behalf. If the Justice Department joins one of these lawsuits, the

plaintiff can receive 15% to 25% of recoveries. This law creates significant

incentives for layman to monitor firms’ disclosure behavior thereby leading

to endogenous litigation risk.5 To capture the endogeneity of litigation risk,

we assume there is a whistleblower who may investigate the firm at a cost.

The wistleblower receives a reward, paid by the firm, if he is able to estab-

lish that the firm concealed negative information. We demonstrate that the

wistleblower tends to investigate firms with relative low prior performance for

whom the market uncertainty is relatively large (the ones that have remained

silent for a long period of time). The presence of the wistleblower means that,

in equilibrium, there must always be a positive probability of concealment, no

matter how large the litigation cost is. This complementarity between con-

cealment and monitoring is reminiscent of the literature with two sided moral

hazard (see e.g., Halac and Prat (2014))

In Section 6, we study the relation between patents and disclosure rate.

We consider the case when the firm’s cash flows have a finite, predetermined

life, perhaps because the firm’s asset is protected by a patent. In this setting,

we show that firms tend to delay disclosures of adverse events until the patent’s

expiration is sufficiently close, and cluster the release of bad news just prior

still holds if negative shocks are sufficiently persistent.
5An article published in the Wall Street Journal (7/24/2014) relates the story of Dr.

William LaCorte, as a “serial whistleblower.” Recently LaCorte received a $38 million cut
under a federal law that encourages fraud reporting. Much was from a $250 million U.S. set-
tlement with Merck in 2008 over allegations it overcharged Medicaid for Pepcid, a heartburn
drug. He used part of his portion to buy a boat he named Pepsid.
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to the patent’s expiration. To the best of our knowledge these predictions

are new and have not been tested yet. Also, we show that the longer the

patent, the more slowly the firm reveals the adverse information. This intuitive

result suggests that, from a policy perspective, the more socially relevant the

disclosures of the firm, the shorter should be the length of the patent awarded

to the firm.

Our results also apply to the problem of product quality certification

(see e.g., Dranove and Jin (2010)). Indeed, the model can be interpreted as

one in which a monopolist sells a product of unknown quality to a mass of

buyers. At each point in time, buyers purchase the good of unobservable

quality at a price that equals the good’s expected quality. The monopolist has

the option to certify the product’s quality at a cost to influence the trajectory

of future prices. This certification-like interpretation, originally adopted by

Jovanovic (1982), highlights the parallel between corporate disclosures and

quality certification.

The rest of the paper is organized as follows. Section 2 presents the set-

ting. Section 3 analyzes the baseline model without litigation risk. Section 4

introduces litigation risk. Section 5 studies endogenous public news in settings

where fact checkers monitor the firm’s disclosure behavior. Finally, Section 6

analyses the case of an asset with finite maturity and study the the effect of

patents on disclosures.

1.1 Related Literature

This paper extends Jovanovic (1982) and Verrecchia (1983, 1990) to a contin-

uous time setting. Unlike existing literature, our model features a continuous

flow of private information. Moreover, our model includes a continuous flow

of public information and the presence of stochastic litigation costs.

The most closely related paper is Acharya, DeMarzo and Kremer (2011).

They consider a dynamic version of Dye (1985), where the manager may be

privately informed about the asset value. When informed, the manager may

disclose his private information at one of two points in time: at the start of
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the game or at a known date right after a public news signal is released. If the

manager’s private information is not so favorable, waiting for news has positive

option value, since the public signal might induce a higher price in the absence

of disclosure than in its presence. By contrast, if the public signal turned out

to be unfavorable, the manager could mitigate its negative price effect by

disclosing his own private information. Their model explains clustering of

disclosure in bad times: the less favorable the public signal, the higher the

probability of disclosure.

Kremer, Guttman and Skrypacz (2012) consider disclosure timing and the

resulting price consequences. They study a two-period extension of the Dye

(1985) model, where in each period, the manager may observe with some prob-

ability any of two pieces of information (if previously unobserved). They show

that later disclosures are interpreted more favorably by the market because,

in equilibrium, when partial disclosures are made earlier, the probability that

the manager is hiding information is perceived to be higher.

In the presence of litigation risk, beliefs dynamics resemble those in the re-

cent literature on dynamic signaling. Like in previous dynamic signaling mod-

els (Bar-Isaac, 2003; Daley and Green, 2012; Gul and Pesendorfer, 2012; Lee

and Liu, 2013), the use of mixed strategies introduces a lower belief threshold

such that the decision to delay information prevents beliefs to fall even further.

This paper relates to the industrial organization literature on imperfect

competition with uncertain quality (see e.g., Bagwell and Riordan (1991);

Conlisk, Gerstner and Sobel (1984); Stokey (1981); Daughety and Reinganum

(2008)). Although in this strand of the I.O literature, prices are chosen by firms

as signals of product quality, in our paper the firm controls the price only

indirectly by influencing buyers’ beliefs through certification. For example,

in Bagwell and Riordan (1991) high and declining prices signal high quality,

instead in our paper this price pattern reflects a deterioration of market beliefs

about quality.

The literature studying the effect of quality certification on consumer choices

and seller behavior is also closely related. In a recent survey, Dranove and Jin

(2010) argue that “while most existing studies have examined the short-run
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consequences of quality disclosure, little is known about long-run effects.” This

paper characterizes the distribution of steady state prices and the market’s

long-run uncertainty about quality.

This paper builds on the literature on the relationship of litigation risk and

disclosure. Ongoing work by Dye (2014) extends Dye (1985) by incorporating

litigation risk. Daughety and Reinganum (2008) study a static model where a

firm facing litigation risk may either signal safety/quality via pricing or quality

disclosures. The authors show that, depending on the level of litigation risk,

the equilibrium may result in too little or too much disclosure.

Our endogenous litigation extension is closely related to the literature on

monitoring and auditing. In particular, a series of early papers study the prob-

lem of monitoring when the monitor cannot commit to a monitoring strategy.

Graetz, Reinganum and Wilde (1986) for example study the incentives of the

IRS to audit taxpayers when they may underreport their taxable income and

a fraction of the taxpayers are honest. Our endogenous monitoring extension,

in Section 5, can be considered as a dynamic extension of Graetz, Reinganum

and Wilde (1986). Our endogenous litigation extension is also closely related

to Halac and Prat (2014). In their model, a principal can monitor a myopic

agent’s “good behavior” so as to mitigate the agent’s tendency to shirk in the

absence of “recognition”. Whereas in our model the fact finder monitors the

manager to extract rents from the manager’s bad behaviour. Also, while in

our model the fact finder chooses the intensity of monitoring on a continuous

basis, in Halac and Prac (2014) monitoring is a lumpy investment that entails

a fixed cost and can depreciate. Such an investment gives rise to a detec-

tion technology that produces a verifiable (Poisson) signal which has positive

arrival intensity when the agent exerts effort. Hence, if the technology is in

place, the intensity of monitoring is fixed.

2 Model

We consider a firm that pays a terminal dividend VτM
when the firm matures,

at a random time τM that has arrival intensity γ. We assume that the firm
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generates no cash flows before maturing in order to abstract from the infor-

mational role of dividends and focus on disclosures.

The value of assets Vt follows a continuous-time Markov chain with state

space {0, 1}. The terminal dividend is thus equal to 1 if the value of assets is 1

at time τM , and zero otherwise. The value of the asset jumps from 0 to 1 with

intensity λ1 while it jumps back from 1 to 0 with intensity λ0. We can think of

λ0 as the frequency with which the asset suffers an impairment. When λ1 = 0,

this impairment is permanent, otherwise the impairement is transitory.

At the outset, the asset value is known to be 1, namely V0 = 1.6 From that

point onwards, the manager privately observes any shock to the asset value.

However, at any point in time, the manager can disclose his private informa-

tion at a cost. This disclosure cost may arise from the proprietary nature of

information (as in Verrecchia (1983)), the need to certify the information to

make it credible (for example, hiring an auditor, as in Jovanovic (1982)), or

simply from the opportunity cost of the time required to prepare and dissem-

inate the information.7 We assume that the disclosure cost varies with the

value disclosed. In particular, the cost of disclosing information is C > 0 when

the asset value is high and 0 when the asset value is low. Hence, disclosing

bad news is costless.8

Managers’ incentives to disclose private information at any point in time

depend on the velocity with which the information will leak into the market via

external sources (e.g., media coverage, analysts’ recommendations, peer firms’

disclosures) and the way the market interprets the absence of public informa-

tion. Despite the enormous flow of public information that characterizes the

U.S. market, some commentators argue that U.S. managers are particularly

keen on providing ”earnings’ guidance.” Public information is represented by

a Poisson process N = {Nt}t≥0. If the value of assets is low, N has arrival

6Nothing changes if V0 is private information at the start.
7A number of large investors such as Warren Buffett (1996) and analysts such as Candace

Browning (2006), head of global research at Merrill Lynch, have called for managers to give
up quarterly earnings guidance and hence avoid the myopic managerial behavior caused by
attempts to meet market expectations.

8This assumption is not required for the results to hold; assuming that the cost of
disclosure in the low state is C0 > 0 would generate the same predictions.
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rate μ, whereas if the value of assets is high, then N has arrival rate 0. Hence,

observing an arrival is perfect evidence of low asset value, which we refer to

as bad news.9 10

We assume that manager is subject to legal liability. If bad news arrives

and the manager has not yet disclosed that the asset value is low, then the

manager bears a fine with positive probability. Let ℓt be a random variable

that takes the value 1 one in the event the manager is found liable of with-

holding information, and zero otherwise. The manager’s personal cost of legal

liability is denoted cℓ while the probability of experiencing this cost is q if the

last time the manager disclosed information he disclosed good news and zero

otherwise.11 Hence, if the manager’s latest disclosure was bad news, then the

manager is safe from legal liability since he can claim he already disclosed the

bad news.12 We denote by θ := cℓq the expected legal cost of not disclosing

negative information, conditional on a news arrival. 13 Prices are set in a

Bayesian and risk-neutral manner. We normalize the market’s interest rate

to be zero. So if dt ∈ {0, 1} denotes the disclosure decision at time t and

d = {dt}t≥0 denotes the market’s conjecture about the manager’s disclosure

strategy, then the firm’s stock price, given the history of disclosures Ft, is set

9When public information is noisy, managerial disclosures may be triggered by a news
arrival, and be used by the manager as a means to counteract the sometimes adverse price
effect of noisy news. This reactive-like disclosures generate clustering of disclosure in bad
times (see Acharya, DeMarzo and Kremer (2011)). For simplicity, we abstract away from
this effect and instead focus on the the case where a news arrival reveal the underlying state
perfectly, without noise.

10We could also have considered the case with positive Poisson shocks, in which an
arrival represents a positive cash flow generated by a breakthrough or innovation. The
characterization of the equilibrium would be similar, and the main economic forces would
remain the same. We focus on the bad news case to lay the groundwork for the case with
legal liability in Section 4.

11Strictly speaking cℓ is the normalized legal cost. If Cℓ is the cost then cℓ := (γ+κ)Cℓ/γ.
12Large and sudden declines in stock price at the time of an information release increase

the risk of litigation considerably, ex post (Alexander, 1991). This evidence is consistent
with our representation of the information environment. All we need is that the litigation
cost is smaller when the manager preempts the bad news relative to when the bad news are
conveyed by the public news.

13Our setting can be also mapped into situations in which non-disclosure of negative
information entails real costs such as those arising when the manager continues a project
which has become unprofitable so to not reveal the market the bad news about the project.
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as

Pt = Ed(VτM
|Ft) (1)

where Ed(·) denotes the expectation operator based on the measure induced by

d. Following Acharya, DeMarzo and Kremer (2011) and Benmelech, Kandel

and Veronesi (2010), we assume the manager chooses a disclosure strategy σ

that maximizes the present value of future prices net of disclosure expenses

and litigation costs:

Ut(d, σ) := Ed

[
∫ τM

t

e−ρ(s−t)Psds − C
∑

t≤s<τM

e−ρ(s−t)σs − Cℓ

∫ ∞

t

e−r(s−t)ℓsdNs

∣
∣
∣Ft, Vt

]

,

(2)

Hence, the manager cares not only about the current price implications of

his disclosures but also the long-term ones. This concern for future prices is

natural and supported by the vast evidence that managers’ wealth is affected

by their own firms’ stock price. These incentives may arise as a means of

inducing the manager to exert effort, in the spirit of Benmelech, Kandel and

Veronesi (2010), but since our focus is on disclosure behavior we take the

manager’s incentives as given.

The manager also cares about the present value of disclosure expenses. As

mentioned above, the literature has often interpreted C as arising from the

proprietary nature of the information.14 For this interpretation to be literally

valid in a dynamic context, C should be priced; namely it should be incorpo-

rated into the price as part of the firm’s future cash flows. This alternative

formulation would be more complicated without adding much economic insight

(the interested reader can find this alternative formulation in Appendix A).

Hereafter, we adopt the above formulation and interpret C as the proprietary

14Verrecchia (1983) for example argues that “the release of a variety of accounting statis-
tics about a firm may be useful to competitors, shareholders, or employees in a way which
is harmful to a firm’s prospects. One example of this is the response of the United Auto
Workers for fewer labor concessions in the face of an announcement by Chrysler Corpora-
tion’s chairman that that firm’s fortunes had improved. Other examples might include the
reluctance of managers in certain highly competitive industries, such as personal comput-
ers or airlines, or certain politically sensitive industries, such as the oil industry or foreign
automobile importers, to disclose favorable accounting data.”
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cost of positive disclosures.

We can compute the evolution of beliefs using Bayes’ rule. In the absence

of news arrivals beliefs evolve according to 15

ṗt = f(pt), (3)

where

f(p) = κ(p̄ − p) + μp(1 − p), (4)

and

p̄ :=
λ1

λ0 + λ1

is the stationary probability that the value of the asset is 1 and κ :=

λ0+λ1 represents the asset’s mean reversion, namely the speed at which market

belief reverts to the stationary point p absent disclosure. This measure is the

reciprocal of the persistence of shocks. In the absence of disclosures and news,

beliefs experience a downward drift toward the stationary level p̂ as defined

by f(p̂) = 0, where

p̂ =
1

2

(

1 −
κ

μ

)

+

√

1

4

(

1 −
κ

μ

)2

+
κ

μ
p̄. (5)

The unconditional probability that Vt = 1 given an initial condition p0 = p is

φt(p) := p̄ + e−κt (p − p̄) .

The price of the firm at time t is given by

Pt =

∫ ∞

t

φs−t(pt)γe−γ(s−t)ds =
κ

γ + κ
p̄ +

γ

γ + κ
pt. (6)

The price Pt is affine in beliefs pt. Hence, from here onwards, we use the

terms “price” and “beliefs” interchangeably. Moreover, defining r := ρ + γ

and the normalized cost c := (γ +κ)C/γ and cℓ := (γ +κ)Cℓ/γ, the manager’s

15See Karlin and Taylor (1981, p. 144).
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objective function can be re-written as

Ut(d, σ) := E

[
∫ ∞

t

e−r(s−t)psds − c
∑

s≥t

e−r(s−t)σs − cℓ

∫ ∞

t

e−r(s−t)ℓsdNs

∣
∣
∣Ft, Vt

]

,

(7)

where Ut and Ut satisfy the following relation

Ut =
κ

r(γ + κ)
p̄ +

γ

γ + κ
Ut.

Hence, the manager’s disclosure strategy σ maximizes (7) given the asset value

Vt and the market’s belief. In this model, an equilibrium is defined as follows.

Definition 1. An equilibrium is a disclosure strategy d = {dt}t≥0 and a belief

process p = {pt}t≥0 such that, for all t ≥ 0,

1. The market belief is pt = Ed(Vt|Ft)

2. The disclosure strategy maximizes the manager’s utility given the market

beliefs, that is d ∈ arg maxσ Ut(d, σ).

Both conditions are standard. At every point in time, the price is set

according to Bayes’ rule, given the manager’s strategy and history. Similarly,

the manager’s disclosure strategy maximizes the manager’s expected utility at

each point in time and for all possible histories. In this paper, we focus on

Markov Perfect equilibria.

Certification of Product Quality. The model allows for many applica-

tions. One important application is the certification of product quality (for

two excellent surveys see Milgrom (2008) and Dranove and Jin (2010)). In-

deed, the model can be interpreted as one in which a monopolist sells a product

of unknown quality to a mass of buyers. At each point in time, the buyers

purchase the good of unobservable quality v ∈ {0, 1} at a price that equals

the good’s expected quality, pt. The monopolist has the option to certify the

product’s quality at a cost c in order to affect the trajectory of future prices.

12



If we normalize the good’s production cost to be zero, then the present value

of the firm’s expected profits, given a certification strategy σ, is given by (7).

This certification-like interpretation, originally adopted by Jovanovic (1982),

highlights the parallel between corporate disclosures and quality certification.

3 Equilibrium without Litigation

As a benchmark, we consider the case without litigation risk (cℓ = 0) first.

Markov equilibria are characterized by a disclosure threshold p∗ such that16

dt = 1{p
t−

≤p∗}Vt.

That is, the manager discloses at time t if and only if both the price is

lower than or equal to p∗ and the value of asset is high.17 Anticipating this

strategy, the market expects no disclosure when the price is above p∗. As a

consequence, for any pt > p∗ the price evolves according to (3). By contrast,

for pt ≤ p∗, we have pt = dt. That is, if the manager does not disclose his

information when the price reaches the threshold p∗, then the market infers

that the asset value is low. As a result, the price drops from p∗ to zero and

remains there until the manager discloses good news again (i.e., Vt = 1). This

happens as soon as the asset value returns to the high state.

The dynamics of market beliefs are noteworthy. At the beginning of the

game, the price drifts down for some time until disclosing good news becomes

profitable to the manager. At that point, the price jumps upward if the man-

ager discloses good news or downwards if the manager withholds information.

Kothari, Shu and Wysocki (2009) empirically document a similar pattern.

They find evidence consistent with the view that managers tend to withhold

16We use the usual left limit notation pt− := lims↑t ps.
17This characterization has empirical support. Indeed, the idea that the propensity of

disclosure is negatively correlated with the level of stock prices is natural, and has been doc-
umented empirically. For example, Sletten (2012) argue that “stock price declines prompt
managers to voluntarily disclose firm-value-related information (management forecasts) that
was withheld prior to the decline because it was unfavorable but became favorable at a lower
stock price.”
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bad news from investors and that prices tend to drift down, absent disclosure

and jump upward upon the release of good news. Notice that the failure to

disclose at pt = p∗ is followed by a period where (i) the price remains flat for

some (random) time and (ii) the information becomes symmetric. By contrast,

the period following a disclosure is characterized by the price (mean) reverting

towards its long-run value p, and by the manager having private information

about the true asset value.

pt

t0 T1 T2

1

p∗

p̄ dNτ = 1

dT1
= 1

dT2
= 1

Figure 1: Example of a sample path of the share price.

In equilibrium, the market’s conjecture d must be consistent with the man-

ager’s optimal strategy σ. With some abuse of notation, let Uv(p) be the

manager’s payoff given that the market belief is pt = p and the asset value is

Vt = v ∈ {0, 1}. When p > p∗ > p̂, the manager’s payoff in equilibrium can be

represented by a an HJB equation

rUv(pt) = pt +
d

dt
E [Uv(pt)] .

The interpretation of the value function is standard; we can think of the

manager’s job as an asset whose cost of capital in a competitive market rUv(p)

must equal the rate of return on the asset, as given by its instantaneous flow

p, and its expected capital gains E [dUv] /dt. The latter may come in three

forms: the deterministic evolution of investors’ beliefs, the possibility the as-
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set experiences a real negative shock, and the possibility that negative news

arrives. The Hamilton-Jacobi-Bellman (HJB) equation is:

rU1(p) = p + f(p)U ′
1(p) + λ0[U0(p) − U1(p)] (8)

rU0(p) = p + f(p)U ′
0(p) + λ1[U1(p) − U0(p)] + μ[U0(0) − U0(p)] (9)

with boundary conditions

U1(p∗) = U1(1) − c (10)

U0(p∗) =
λ1

r + λ1

[U1(1) − c]. (11)

Moreover, the value function must satisfy the following optimality conditions:

U1(1) − c ≥ 0

U1(p) ≥ U1(1) − c for p > p∗

U1(p) ≤ U1(1) − c for p ≤ p∗.

In essence, the manager must solve an optimal stopping problem where the

stopping time is endogenous, since it must be consistent with the market’s

rational expectations.

In general, it is not possible to solve the HJB equation in closed form. The

following proposition characterizes the equilibrium.

Proposition 1. For any p∗ ∈ (p̂, 1) satisfying

U1 (1) − c ≥ 0 (12)

and

U ′
1 (p∗) ≥ 0 (13)

there is an equilibrium with threshold p∗.

It is instructive to consider the manager’s payoff at the start of the game,
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namely when the market beliefs are p = 1. Let’s define

C(c) :=
δ(1)

1 − δ(1)
c.

Hence, the manager’s payoff at the outset is given by

U1(1) = UND(1) − C(c).

The first component, UND(1), is the payoff the manager would obtain had he

been able to commit to never disclose.18 The second component C(c) is the

present value of the disclosure expense the manager expects to bear over his

whole lifetime, given his lack of commitment.19 The manager’s payoff is thus

bounded above by the non-disclosure payoff UND(1). This is natural: in our

setting, information has no (social) value, hence the disclosure expense is a

deadweight loss borne by the manager only because he cannot avoid disclosing

his information when the price is severely depressed. But ex-ante, the average

trajectory of future prices is unaffected by the manager’s disclosure policy; in

equilibrium the event of disclosure drives the price up and the lack thereof

drives the price down.

The discrete support of Vt results in the existence of multiple equilibria. In

particular, when the cost of disclosure is moderate, there exists a continuum

of thresholds p∗ satisfying the equilibrium conditions. However, in our model,

equilibria can be Pareto ordered; Harsanyi (1964) and Fudenberg and Tirole

(1985) argue that confronted with two possible equilibria it is natural to focus

on the Pareto-dominant one.

Definition 2. The equilibrium threshold p†∗ is Pareto dominant if and only if

Uv(p|p
†
∗) ≥ Uv(p|p∗) for all p ∈ [0, 1], p∗ ∈ [p−∗ , p+

∗ ] and v ∈ {0, 1}.

18Weak commitments are sometimes observed in the real world. On December 13, 2002,
the Coca Cola Company announced that it would stop providing quarterly earnings-per-
share guidance to stock analysts, stating that the company hoped the move would focus
investor attention on long-run performance.

19As a mirror image, one can think of this term as the profits of a certifier who, at the
outset, commits to selling his certification services for a fee c.
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This selection criterion is very weak since it requires the equilibrium to

be Pareto optimal for all beliefs and all states. We can think of the Pareto-

dominating equilibrium as the natural outcome of an extended game when, at

the outset, the manager informally announces the firm’s disclosure policy to

the market. Though the manager cannot fully commit to disclosing regularly,

he can issue a cheap talk message along the lines of “we will try to provide

guidance on a quarterly basis”.20 This type of announcement is common in

practice; firms often announce their disclosure policy ex ante. Although these

announcements are non binding, they still help set market’s expectations about

firm’s disclosure policies.

We have the following proposition describing the set of equilibria and the

Pareto dominating one.

Proposition 2. Suppose there are equilibrium disclosure thresholds p̂ ≤ p−∗ <

p+
∗ such that

U1

(
1|p+

∗

)
− c = 0 (14)

U ′
1

(
p−∗ |p

−
∗

)
= 0, (15)

then, p∗ is an equilibrium disclosure threshold if and only if p∗ ∈ [p−∗ , p+
∗ ].

Moreover, the least transparent equilibrium, p−∗ , is the Pareto dominant equi-

librium.

This result is intuitive. Given that disclosure is a deadweight cost, the

most efficient equilibrium is the one that minimizes the frequency of disclo-

sure, for this equilibrium minimizes also the present value of future disclosure

expenses. The most transparent equilibrium, in terms of the probability of dis-

closure, arises when condition (12) is binding. By contrast, the most opaque

equilibrium arises when condition (13) is binding.

20For example, Chen, Matsumoto and Rajgopal (2011) note that on December 13, 2002,
the Coca Cola Company announced that it would stop providing quarterly earnings-per-
share guidance to stock analysts, stating that the company hopes the move would focus
investor attention on long-run performance. Shortly thereafter, several other prominent
firms such as AT&T and McDonalds made similar announcements renouncing quarterly
earnings guidance.
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Notice again that the least transparent equilibrium is the manager’s pre-

ferred equilibrium for any initial belief p and any asset value. Hence the

manager’s incentives to coordinate in the least transparent equilibrium will

remain the same for all histories of the game.

3.1 No Public News: μ = 0

In general, it is not possible to solve the HJB equations in closed form. How-

ever, a closed form characterization exists for the case when μ = 0. We refer to

an equilibrium in which disclosure happens with probability zero (at any point

in time and for any history) as a non-disclosure equilibrium. With some abuse

of notation, we let Uv(p|p∗) be the manager’s expected payoff in an equilibrium

with disclosure threshold p∗, when the state is v and the current price is p.

The solution to the HJB equation for a given disclosure threshold p∗ is

Proposition 3. Suppose that p∗ ∈ (p̄, 1), then the manager’s payoff is given

by

U0(p) = U1(p) −
r

r + λ1

(
p∗ − p̄

p − p̄

)1+ r
κ (

U1(1) − c
)

(16)

U1(p) =

∫ T (p)

0

e−rtφt(p)dt + δ(p)
(

U1(1) − c
)

, (17)

where

U1(1) = UND(1) −
δ(1)

1 − δ(1)
c

and

δ(p) :=

(
p∗ − p̄

p − p̄

) r
κ
[
rp̄ + κp̄

r + κp̄
+

r(1 − p̄)

r + κp̄

p∗ − p̄

p − p̄

]

,

T (p) = −
1

κ
log

(
p∗ − p̄

p − p̄

)

.

The following proposition characterizes the equilibrium set

Proposition 4. Let

ĉ :=
λ1 + r

r (r + κ)
.
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If c < (1 − p̄)ĉ, then any equilibrium has a positive probability of disclosure.

In particular:

1. If c < (1 − p̄)ĉ, there are disclosure thresholds p−∗ < p+
∗ satisfying the

boundary conditions

U1

(
1|p+

∗

)
− c = 0 (18)

U ′
1

(
p−∗ |p

−
∗

)
= 0, (19)

such that, for any p∗ ∈ [p−∗ , p+
∗ ], there is an equilibrium with disclosure

threshold p∗.

2. If (1 − p̄)ĉ ≤ c < ĉ, then for any p∗ ∈ [p̄, p+
∗ ], where p+

∗ satisfies (18),

there is an equilibrium with disclosure threshold p∗.

3. If c ≥ ĉ, the only equilibrium entails no disclosure.

If c < (1−p̄)ĉ, then the Pareto dominant equilibrium is the least transparent

equilibrium, that is, p†∗ = p−∗ . On the other hand, if c ≥ (1 − p̄)ĉ, then the

Pareto dominant equilibrium has no disclosure.

This result reveals that the persistence of cash flows, κ, is a key determi-

nant of disclosure frequency. For a given disclosure policy a higher persistence

mitigates the price drift thus decreasing the frequency of disclosure. But per-

sistence also affects the manager’s disclosure incentives. A higher persistence

means the the information is more long-lived and, therefore, any disclosure has

a more long lasting effect on the stock price. The presence of these countervail-

ing effects explains why the effect of persistence on the frequency of disclosure

is non-monotonic.

4 Legal Liability and Disclosure of Bad News

In the real world, concealing bad news can be very costly. For example, in a

recent case, Toyota was forced to pay $1.2 billion penalty to settle the criminal
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probe into its handling of unintended acceleration problems that led to recalls

of 8.1 million vehicles beginning in 2009.21 Similarly, in 2012, GlaxoSmithKline

agreed to plead guilty and pay a $3 billion fine for withholding results regarding

the cardiovascular safety of Avandia.22

The empirical literature argues that litigation risk is indeed an important

driver of firms’ voluntary disclosures. For example, Lev (1995) and Skinner

(1994) document that managers can reduce stockholder litigation costs by vol-

untarily disclosing adverse earnings news “early,”namely before the mandated

release date. Consistent with this view, Skinner (1994) finds that managers

use voluntary disclosures to preempt large negative earnings surprises more

often than other types of earnings news.23 In this section, we study the effect

of litigation risk on disclosure patterns. We first consider the special case of

permanent shocks, which is particularly tractable, and then the general case

of transitory shocks.

4.1 Permanent Shocks: When Preemption Pays Off

Assume that if the asset experiences a negative shock, its value remain at zero

forever; in other words, impairments are permanent (i.e., λ1 = 0). Most of the

insights on the effect of litigation risk can be captured in this stylized setting.

Also, the assumption of permanent impairments is realistic in many real world

situations. For example, permanent impairments arise when a regulator bans

a pharmaceutical company from commercializing a drug because of safety con-

21The attorney General Eric Holder called the settlement the largest U.S. criminal penalty
ever imposed on a car company and asserted “we can say for certain that Toyota intentionally
concealed information and misled the public about the safety issues behind these recalls.”

22The case of GSK’s diabetes drug Avandia is paradigmatic. Its sales were $2.5-billion
in 2006; however, following a study published in the New England Journal of Medicine in
2007 that linked the drug’s use to an increased risk of heart attack, sales plummeted to
$9.5-million in 2012. In 2012, the U.S. Justice Department announced GSK had agreed to
plead guilty and pay a $3 billion fine, in part for withholding the results of two studies of the
cardiovascular safety of Avandia between 2001 and 2007 (New York Times, July 2, 2012).

23Also, Skinner (1997) finds that voluntary disclosures occur more frequently during
quarters that result in litigation than in quarters that do not, because managers’ incentives to
pre-disclose earnings news increase as the news becomes more adverse, presumably because
this reduces the cost of resolving litigation that inevitably follows in bad news quarters.
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cerns; a borrower defaults on its debt, or technological improvements drive a

product out of the market.

Some preliminary analysis and notational conventions are in order. The

evolution of prices, absent public news, is given by

φt (p0) =
p0 (λ0 − μ)

e(λ0−μ)t (λ0 − μ(1 − p0)) − p0μ
.

when the initial price is p0. Using this equation we can define T (p0; p∗) as

the solution of φT (p0) = p∗. The function T (p0; p∗) thus represents the time

required for the price pt to reach p∗ when the initial price is p0. This number

can be computed as

T (p0; p∗) =
1

λ0 − μ
ln

(
p0

p∗

λ0 − μ + p∗μ

λ0 − μ + p0μ

)

As in previous sections, absent news and disclosures, the price drifts down-

ward due to the possibility of an undisclosed impairment, but the drift is

mitigated by the intensity of public news μ. Though the asset’s long term

value is p = 0, the price absent news and disclosure is bounded from below by

p̂ = max

(

1 −
λ0

μ
, 0

)

In the sequel, we restrict attention to parameter values such that p̂ < μθ, for

otherwise disclosure of bad news would never occur in equilibrium. Similarly,

we assume μθ < 1 for otherwise bad news would be fully disclosed and the

information would be symmetric at each point in time.

Depending on the cost of disclosure c, different equilibrium structures

emerge. However, all equilibria are characterized by a threshold p∗ such that

whenever the price reaches the threshold, the manager may disclose some of his

information. Whether the manager discloses good or bad news when pt = p∗

depends on the magnitude of the disclosure cost relative to the litigation cost

μθ. In the sequel, we refer to a good news equilibrium as that arising when the

manager discloses good news at pt = p∗, and a bad news equilibrium as that
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arising when the manager (may) only disclose bad news at p∗. We first char-

acterize the bad news equilibrium, and then we provide the whole taxonomy

of equilibria.

At first blush, one might think that the presence of litigation risk (θ > 0)

would lead the manager to spontaneously disclose bad news, especially when

prices are relatively low. But on closer inspection, this is not so clear: if the

market expected the manager to disclose bad news at a particular point in

time, then withholding the information at that point would be interpreted by

the market as clear evidence that the asset value is high. This would lead to a

jump in the stock price, which in turn would destroy the manager’s incentives

to disclose the information in the first place. The temptation to withhold bad

news, so to benefit from the price jump, would offset the litigation preemption

benefits from disclosing such news. This suggests that the manager’s disclosure

strategy must entail randomization.

Consider the bad news equilibrium. Assume the manager discloses bad

news when the price reaches a threshold p∗ but never discloses good news

(given that λ1 = 0). We guess and verify that any equilibrium where bad

news are disclosed with a positive probability has the following structure. If

Vt = 0, then:

1. If pt > p∗ we have dt = ∅.

2. If pt = p∗ then the manager discloses at an exponential time with a mean

arrival rate

ζ = κ
p∗

p∗(1 − p∗)
− μ.

The probability of disclosure ζ is such that the price process, pt, has a lower

barrier at p∗. Figure 2 shows a sample path of the stock price in equilibrium.

At the outset, the price experiences a downward drift up until it reaches p∗. If

the asset value is low when the price reaches p∗, then the manager randomizes

between disclosing and not disclosing his information. In response, the price

remains flat for some time, until the manager reports bad news, at time T1.

Naturally, such a disclosure causes the price to drop and stay at zero forever,
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given that the impairment is permanent.

Unlike the case without litigation risk analyzed in Sections 2, here the

manager strictly prefers not to disclose good news. This speaks to the notion

that litigation risk crowds out disclosure of good news: the presence of litiga-

tion risk not only prompts the manager to disclose bad news but also removes

the incentive to disclose good news. The reason is that the absence of good

news disclosures is now perceived by the market as a favorable signal of asset

value: because the market expects that the manager will sometimes disclose

bad news, it also interprets more favorably the act of withholding informa-

tion. This effect is sometimes strong enough to fully offset the drift in the

stock price.

As previously mentioned, the equilibrium includes randomization. The

manager’s randomization keeps the price from jumping upward when the price

reaches the threshold, but forces it to either remain constant in the absence

of disclosure, or to drop to zero in the presence of a disclosure (see Figure 2).

Of course, for randomization to be the manager’s optimal response, he must

be indifferent between disclosing low values to avoid the risk of litigation, and

not concealing the bad news to enjoy inflated prices.

The threshold p∗ characterizes an optimal disclosure strategy if the man-

ager’s payoff satisfies the following HJB equation. For pt > p∗,

rU1(p) = p + f(p)U ′
1(p) + λ0[U0(p) − U1(p)] (20)

rU0(p) = p − μθ + f(p)U ′
0(p) + μ[U0(0) − U0(p)]. (21)

These equations are analogous to those encountered in previous settings,

except that in the low state, the manager’s instant payoff is given by the price

net of expected litigation costs. These equations also show that the manager

is exposed to two types of shocks. First, the asset value may experience a “real

shock” that even when not observed by the market, affects both the trajectory

of prices and expected litigation costs. Second, the manager may experience a

“news shock”; a news arrival may reveal that the manager withheld informa-

tion, thus triggering a drop in the stock price and potential litigation costs.
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The boundary conditions are straightforward in this case. First observe

that

U0 (0) = 0,

given that the shocks are permanent. Also, for the manager to be willing

to randomize at p∗ we have

U0 (p∗) = U0 (0) .

This condition allows us to pin down uniquely the disclosure threshold.

Hence, unlike good news equilibria, no selection criterion is required.

Lemma 1. The solution to the HJB equation, when the initial price is p and

the equilibrium threshold is p∗, is given by

U0(p) =

∫ T (p)

0

e−(r+μ)t
(
φt(p) − μθ

)
dt

U1(p) =

∫ T (p)

0

e−(r+λ0)t

(
μ − λ0e

−(μ−λ0)t

μ − λ0

φt(p) −
1 − e−(r+μ)(T (p)−t)

r + μ
λ0μθ

)

dt

+ e−(r+λ0)T (p)U1(p∗).

where T (p) = T (p, p∗).

Inspection of these equations reveal that the threshold p∗ is consistent with

the manager’s optimal disclosure policy if and only if

p∗ = μθ.

The manager’s disclosure policy is thus myopic. This is an artifact of

λ1 = 0. In the general case, i.e., when λ1 > 0, the equilibrium threshold is

always lower than μθ because delaying disclosures, as an attempt to bet for

resurrection, has some option value.

We can now determine the propensity with which the manager discloses

bad news. Using Bayes’ rule, we find that the value of ζ that ensures the price
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remains flat at pt = μθ, absent disclosure, is given by

ζ =
λ0μθ

μθ(1 − μθ)
− μ.

The propensity of disclosure ζ increases monotonically in the cost of liti-

gation θ and the likelihood of a shock λ0, but it is u-shaped in the intensity of

public news μ.

So far, we have only considered the bad news equilibrium. Depending on

the importance of litigation risks vis-a-vis disclosure costs, there may be no

bad news equilibrium or the bad news equilibrium may coexist with good news

equilibria. In these cases, we resort to Pareto optimality (see Definition 2) as

the refinement criterion.

The next proposition provides the taxonomy of equilibria.

Proposition 5. Let c < c̄ be defined as

c :=

[

1 −

(
μθλ0

λ0 − μ + μ2θ

) r+λ0
λ0−μ

]

r + μ − (r + μ + λ0)μθ

(r + μ) (r + λ0)
+

(
μθλ0

λ0 − μ + μ2θ

) r+λ0
λ0−μ 1 − μθ

r + μ

c̄ :=
(r + μ − λ0μθ) − (μθr + μ − λ0)

(
μθλ0

λ0−μ+μ2θ

) r+λ0
λ0−μ

(r + λ0) (r + μ)
.

Then,

1. An equilibrium with disclosure of good news exists if and only if c ≤ c̄.

2. An equilibrium with disclosure of bad news exists if and only if c ≥ c.

3. If c < c, then any equilibria with good news has a threshold strictly greater

than μθ. That is, p−∗ > μθ.

4. If c < c, the Pareto-dominating equilibrium is the equilibrium with dis-

closure of good news and threshold p−∗ > μθ. Alternatively, if c ≥ c, the

Pareto-dominating equilibrium is the equilibrium with disclosure of bad

news with threshold μθ.
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Proof. The proof can be found in the appendix in a sequence of Lemmas. Part

1 is proven in Lemma 13. Part 2 is proven in Lemma 15. Finally, parts 3 and

4 are proven in Lemma 17.

This taxonomy is intuitive. For very low disclosure costs, only good news

can be released in equilibrium because, otherwise, the manager would have

an incentive to disclose good news before the price reaches the threshold μθ.

Conversely, for very high disclosure cost, only the bad news equilibrium can

prevail. Otherwise, in a good news equilibrium, the manager would have

an incentive to preempt bad news before the price reaches the equilibrium

threshold. For intermediate values of c, both type of equilibria may coexist,

but the bad news equilibrium Pareto-dominates even the most efficient good

news equilibrium. Remarkably, upon imposing Pareto dominance, we end up

with a unique equilibrium for the entire range of parameters.

The above taxonomy could be alternatively described based on the litiga-

tion risk (μ or θ) rather than the disclosure cost c. This alternative taxonomy

would show that, as litigation risk goes up, the equilibrium shifts from good

news to bad news disclosures. This substitution in the type of disclosure, and

in particular the lower probability of good news disclosure caused by the higher

litigation risk, has some empirical support (Lev (1995); Johnson, Kasznik and

Nelson (2001)), and has been explained as arising from the fact that litigation

is triggered by “optimistic disclosures” (Lev (1995)). We provide an alternative

(perhaps complementary) explanation: litigation risk crowds out good news

because silence is perceived by itself as a favorable signal when withholding

bad news entails such risk.

Discussion The empirical literature identifies litigation risk as an impor-

tant determinant of corporate disclosures (see e.g., Skinner (1994); Johnson,

Kasznik and Nelson (2001)), but the sign of the effect is not clear (for example,

Francis, Philbrick and Schipper (1994) argue that litigation potentially reduces

incentives to provide disclosure, particularly of forward-looking information).

However, because litigation risk is not directly observable, this literature has

resorted to measuring litigation risk indirectly from the ex-post frequency of
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litigation; namely the number of class action lawsuits observed in a given in-

dustry or among firms of a certain class. In our setting, this is potentially

misleading –the frequency of disclosure and the likelihood of litigation are si-

multaneously determined; they are not causally linked. In practice, we might

observe a lower frequency of litigation among firms facing greater litigation

risks, simply because these firms preempt litigation more often, by disclosing

their bad information quickly. Conversely, we might observe a higher fre-

quency of disclosure among firms facing more litigation simply because they

are exposed to tighter scrutiny from the market.

Another relevant question is whether litigation risk is “undesirable” from

the manager’s perspective, as intuition would suggest. On the contrary, we

find that a higher litigation risk may improve the manager’s welfare. The

reason is intuitive: as mentioned above, higher litigation risk may crowd out

good news disclosures, thereby reducing the firm’s overall disclosure expense.

The manager may benefit from a higher litigation risk simply because he lacks

commitment power to avoid incurring proprietary disclosure costs, and the

presence of litigation risk may remove this incentive altogether. Notice that

the manager’s ex-ante welfare is greater when θ is very large vs. when θ

approaches zero. While in the former case the manager fully preempts bad

news at no cost, in the latter case the manager incurs proprietary disclosure

costs by disclosing good news. We can show that for high litigation risk, the

manager is better off in the presence of litigation risk than in its absence.

Corollary 1. If c < (1− p̄)c, then there is θ < 1/μ such that for all θ ≥ θ, the

manager’s expected payoff at time 0, U1(1), is strictly higher in the presence

of litigation.

Proof. From Proposition 3 we know that in absence of litigation risk the man-

ager ex-ante payoff is Unl
1 (1) = UND(1)−cδ(1)/(1−δ(1)). If we take θ ≥ 1/μ we

get p∗ = 1 so the manager’s payoff with litigation risk is U l(1) = 1/(r + λ0) =

UND(1). Accordingly, in this case, the manager payoff is strictly higher in the

presence of litigation risk. By continuity of U l(1) with respect to θ there is

θ < 1/μ, such that the inequality continue to hold.
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4.2 Temporary Shocks: Betting for Resurrection

The case of permanent shocks is tractable but somewhat restrictive, for the

following two reasons. First, good and bad news cannot coexist in equilibrium.

Second, in the bad news equilibrium, the manager adopts a myopic policy

which ignores the option value associated with delaying bad news. By contrast,

the case of temporary shocks features both aspects: first, the manager may

disclose good and bad news, second the manager’s disclosure policy is not

myopic; the manager is willing to delay disclosures of bad news for some time,

and even bear temporary losses, hoping that a positive shock would render the

disclosure of bad news unnecessary.

In this section, we restrict attention to the bad news equilibrium. We again

conjecture and verify that the equilibrium is given by

1. If Vt = 1, then dt = 1{p
t−

=0}.

2. If Vt = 0, then:

(a) If pt− > p∗ we have dt = ∅.

(b) If pt− = p∗ then the manager discloses with a mean arrival rate

ζ = κ
p∗ − p̄

p∗(1 − p∗)
− μ.

(c) If pt− < p∗ then the manager discloses immediately with probabil-

ity24

pt−

1 − pt−

1 − p∗
p∗

.

Figure 2 shows a sample path of the stock price in equilibrium. At the

start, the price experiences a downward drift until it hits the threshold p∗.

This downward drift is caused purely by the increased likelihood of an undis-

closed impairment. Given bad news, the manager starts randomizing between

24This is an out-off-equilibrium event. With perfect bad news, the market beliefs never
enter the interval (0, p∗) on the equilibrium path.
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Figure 2: Example of a sample path of the share price with litigation cost.

disclosing and not disclosing his private information. The price remains flat

until the manager reports bad news at time T1. Naturally, this disclosure

causes the price to drop to zero and stay there until the situation of the firm

improves, at time T2, and the manager discloses good news. The empirical evi-

dence is broadly consistent with this price pattern. For example, Kothari, Shu

and Wysocki (2009) find that bad news (good news) disclosures are preceded

by a downward (upward) drift in the stock price.

The threshold p∗ characterizes an optimal disclosure strategy if the man-

ager’s payoff satisfy the following HJB equation. For pt > p∗,

rU1(p) = p + f(p)U ′
1(p) + λ0[U0(p) − U1(p)]

rU0(p) = p − μθ + f(p)U ′
0(p) + λ1[U1(p) − U0(p)] + μ[U0(0) − U0(p)].

The manager’s decision to disclose bad news has the flavor of the real

options problem analyzed by Dixit (1989), where a firm has the option, at any

point in time, to shut down a project (i.e., disclose bad news) or restart it

(i.e., disclose good news), based on the project’s observed profitability. The

difference is that the payoffs are endogenous in our analysis, because they are

linked to the market’s equilibrium belief about asset values. When the stock

price is low (and asset value is low), disclosing bad news becomes profitable

29



for the same reason shutting a loss making project is optimal in Dixit’s model.

Also, as in Dixit’s problem, the decision to disclose bad news today is linked

to the option to disclose future good news: if the likelihood of disclosing good

news in the future goes down (perhaps because λ1 is smaller, or the proprietary

costs are higher), then the manager’s incentive to disclose bad news today

weakens. Consequently, he further delays such disclosures. This speaks to a

certain complementarity between disclosure of bad news and good news.

To complete the characterization of the equilibrium, we need to derive the

boundary conditions. When pt = p∗, we have

U0(p∗) = E

[∫ τN∧τD∧τ1

0

e−rt(p∗ − μθ)dt + e−rτN∧τD∧τ1
(
U0(0)1{τN∧τD<τ1} + U1(p∗)1{τN∧τD>τ1}

)
]

,

where τN is the first arrival of public (bad) news, τD is the time at which the

manager voluntarily discloses bad news, and τ1 is the time at which the value

of assets jump from 0 to 1. We can solve for the expected payoff of a low type

manager, as given by

U0(p∗) =

∫ ∞

0

e−(r+μ+ζ+λ1)t
(
p∗ − μθ + (μ + ζ)U0(0) + λ1U1(p∗)

)
dt

U0(p∗) =
p∗ − μθ

r + μ + λ1 + ζ
+

μ + ζ

r + μ + λ1 + ζ
U0(0) +

λ1

r + μ + λ1 + ζ
U1(p∗).

(22)

Following similar steps as the ones above, we get the boundary condition for

a high type manager as given by

U1(p∗) =
p∗ + λ0U0(p∗)

r + λ0

. (23)

In addition, we have the following conditions when pt = 0:

U0(0) =
λ1

r + λ1

U1(0) (24)

U1(0) = U1(1) − c. (25)
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As the manager is using a mixed strategy when pt = p∗, he must be indif-

ferent between disclosing and not disclosing negative information, otherwise

he would not be willing to randomize. Hence, we can determine the threshold

p∗ using the indifference condition for a mixed strategy:

U0(p∗) = U0(0). (26)

We can solve for U0(p∗) by combining equations (22) and (26), which gives

us

U0(p∗) =
p∗ − μθ + λ1U1(p∗)

r + λ1

. (27)

Then, combining (23) with (27) we get

U0(p∗) =
p∗
r

−
μθ

r

r + λ0

r + κ
(28)

U1(p∗) =
p∗
r

−
μθ

r

λ0

r + κ
. (29)

The value of p∗ can thus be obtained from

U0(p∗) =
λ1

r + λ1

[U1(1) − c] . (30)

The strategies above constitute an equilibrium as long as the following

conditions are satisfied

1. U1(1) − c ≥ 0.

2. U1(p) ≥ U1(1) − c for p ≥ p∗.

3. U0(p) ≥ U0(0) for p > p∗.

A necessary condition for the above strategy to be optimal is that U1(p) ≥

U1(1) − c for p ≥ p∗. If U1 is increasing in p∗, then this condition is satisfied

if and only if

U1(p∗) ≥ U1(1) − c =

(

1 +
r

λ1

)

U0(p∗), (31)
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where we have used the equilibrium condition (30). Combining (28), (29) and

(31) we get the following upper bound for the disclosure threshold p∗

p∗ ≤ μθ.

The disclosure threshold is lower than the myopic threshold μθ, which

means that the manager delays bad news, relative to the case with permanent

shocks. When the price reaches μθ, the manager has the option to wait further

and see if the asset recovers its value. If it does, the manager avoids the

negative price consequences of bad news disclosures. Of course, this bet only

makes sense if there is a positive probability of “resurrection” (i.e., λ1 > 0).

The idea that managers may withhold bad news hoping that the firm’s financial

standing will improve is borne out by the survey evidence in Graham, Harvey

and Rajgopal (2005). Some CFOs claim that they delay bad news disclosures

in the hope that they may never have to release the bad news if the firm’s status

improves. This is, in essence, Verrecchia (1983)’s alternative explanation.25

The condition U1(1) − c ≥ 0 is satisfied if and only if U0(p∗) ≥ 0. Thus,

using (28) we obtain a lower bound for p∗ given by

p∗ ≥
r + λ0

r + κ
μθ.

This lower bound reveals an intuitive feature of the model: if litigation

costs are too high, the bound will hit 1 which means that no asymmetry of

information can ever be experienced in equilibrium –negative information must

be revealed immediately when litigation costs are prohibitively high.

Proposition 6. Let p̂ in equation (5) be the unique positive solution to f(p̂) =

0, and let’s define p := max
(
p̂, μθ(r +λ0)/(r +κ)

)
. For any set of parameters

(κ, p̄, μ, θ) such that p̂ < μθ and threshold p∗ ∈ (p, μθ), let Uv(p) be the solution

25Verrecchia (1983) argues “An alternative to my explanation for why a manager delays
the reporting of ‘bad news’ is that he hopes that during the interim some ‘good news’ will
occur to offset what he has to say.’ The disadvantage of this explanation is that it ignores
the fact that rational traders will correctly infer ‘bad news’ as soon as it becomes apparent
that the information is being withheld”
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to equations (20) and (21), with initial conditions (28) and (29). Suppose that

U1(p) satisfies

U0(p∗) =
λ1

r + λ1

[U1(1) − c] ,

where U0(p∗) is given by the initial condition (28). Then, there exists an

equilibrium such that

1. If Vt = 1, then dt = 1{p
t−

=0}.

2. If Vt = 0, then:

• dt = ∅ for pt− > p∗.

• If pt− = p∗, then the manager discloses with intensity

ζ = κ
p∗ − p̄

p∗(1 − p∗)
− μ.

• If pt− < p∗, then the manager discloses immediately with probability

pt−

1 − pt−

1 − p∗
p∗

.

5 Endogenous Monitoring

In this section we endogenize the monitoring intensity, μ. For simplicity, we

restrict attention to the case with permanent shocks, that is we assume λ1 = 0.

Suppose there is a fact finder who can investigate whether the firm has

concealed information and let μt be his monitoring strategy. If the fact finder

proves that the firm is hiding adverse information he gets a payoff b. For

example, the fact finder may be a law firm looking for litigation opportunities

and b = ωθ and ω ∈ (0, 1) be the fraction of the litigation proceeds the lawyer

gets to retain if he proves the firm has concealed information.

The fact finder has a linear monitoring technology; in particular, he can

choose any intensity μt ∈ [0, μ̄] at a cost kμt. Let τℓ be the time at which
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Figure 3: Effect of changes in the arrival rate of bad news, μ, and litigation cost θ
on manager’s payoff. Baseline parameters: r = 0.1, c = 0.5, p̄ = 0.1, κ = 1.2, θ = 1,
μ = 0.2, and θ = 1.

the fact finder discovers that the firm withheld information and τd the date at

which the firm discloses negative information. Then, the fact finder ’s payoff

is

E

[

e−rτℓ∧τdb1τℓ<τd
−

∫ τℓ∧τd

0

e−rtkμtdt

]

=

∫ ∞

0

e−rt−
∫ t

0
(μs+ζs)ds

(
b(1−pt)−k

)
μtdt.

(32)

We can maximize (32) pointwise to get

μt =







0 if pt > pm

μm if pt = pm

μ̄ if pt < pm

(33)

for some μm ∈ [0, μ̄] and pm := (b−k)/b. Under this strategy, the manager’s

disclosure strategy is still myopic (as μt is non-decreasing in time). Hence, the

manager discloses with positive probability if and only if pt = μtθ. Because

the manager would never disclose bad news if μt = 0, the disclosure threshold,
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p∗, must satisfy p∗ ≤ pm.

We need to pin-down μm in (33) to complete the equilibrium characteri-

zation. Two cases must be considered. In the first case, μm = μ̄ and in the

second case μm ∈ (0, μ̄). Using the threshold pm together with the equilibrium

condition pm ≥ p∗ we get

1 −
k

b
≥ μmθ.

The first case happens if pm > p∗ for all μ ∈ [0, μ̄], which is the case if and

only if 1 − k/b > μ̄θ. The equilibrium in this case has a bang-bang solution

with either zero or maximal monitoring. When this condition is not satisfied,

the equilibrium involves an interior value of μm and pm = p∗. The manager

begins disclosing with positive probability exactly at the same time the fact

finder starts monitoring the firm.

We pin-down the value of μm using the indifference condition

pm = 1 −
k

b
= μmθ = p∗,

which yields the equilibrium monitoring intensity

μm =
1

θ

(

1 −
k

b

)

.

We summarize the previous discussion in the following proposition.

Proposition 7. Suppose that b > k. In the model with endogenous monitoring

there is an equilibrium in which the fact finder finds that the firm is hiding

information with mean arrival rate

μt = 1{pt≤pm}μm with threshold pm = 1 −
k

b
,

where the monitoring intensity is μm = μ̄ if

1

θ

(

1 −
k

b

)

> μ̄
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and

μm =
1

θ

(

1 −
k

b

)

otherwise. The manager’s disclosure threshold is p∗ = μmθ and the disclosure

mean arrival rate is

ζ = κ
p∗ − p̄

p∗(1 − p∗)
− μm.

Most of the comparative statics are intuitive. For example, when b = ωθ,

the monitoring threshold is increasing in ω and θ and decreasing in k. The

monitoring intensity is weakly increasing in ω and θ. The monitoring intensity

μm may increase or decrease in θ. It increases if k > ωθ/2 and decreases other-

wise. This ambiguity is explained by the effect of θ on the disclosure strategy.

Increasing θ makes monitoring more profitable, but it also increases the prob-

ability that the manager will preempt litigation by disclosing bad news, thus

reducing the probability that the fact finder gets rewarded. Note that with en-

dogenous monitoring the manager must always hide information with positive

probability, otherwise he would have no incentives to investigate.26

6 Patent Length and Disclosure

An important application of the previous ideas arises when the value of assets

is modified by an event taking place at a known date in the future. Think

for example of an invention whose patent expires at time T , followed by a

reduction in the firm’s profits.

For concreteness, consider the pharmaceutical industry. Assume the asset

is a drug which will go off-patent in period T . After that period, some generic

drugs will enter the market, so competition will increase and profits will go

down. Before time T, the pharmaceutical company receives information, con-

tinuously, about the drug’s side effects: for example the firm may learn about

the increase in the probability of having a heart attack caused by the drug.27

26Rahman (2012) finds that optimal contracts that provide simultaneous incentives to
agents and monitors necessary require some misbehavior (in equilibrium) by the agents.

27In the U.S., consumers, doctors, and lawyers report adverse incidents (e.g., the side
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The pharmaceutical company has an incentive to delay and even conceal the

adverse information because, if made public, the information would impact

the demand for the drug, reducing both the manufacturer’s expected revenues

and stock price. Concealing the information is, however, risky from a legal

standpoint and as before may trigger litigation costs.28

In the following, we study how the patent length affects the speed at which

the firm will disclose adverse information. To model this situation suppose

that the value of the asset in the high state is

V1(t) =







V − e−ρ(T−t)(V − V ) if t ≤ T

V if t > T.
(34)

Before expiration of the patent, the firm earns a flow of profits v. After the

patent expires, competition reduces the profits of the firm to v. Under this

specification, the value of the patent is given by (34), where V = v/ρ, V = v/ρ

and ρ is the market’s discount rate. As before, the value of the firm in the low

state is V0(t) = 0 for all t ≥ 0. Because the benefit of not disclosing negative

information is decreasing in time, the optimal disclosure strategy (of bad news)

is given by a threshold p∗(t) such that the low type manager discloses with

positive probability only when pt = p∗(t). For the same reasons as before, the

equilibrium must entail the use of mixed strategies. Let ζt > 0 be the mean

arrival rate of bad news disclosure. For t < T , the evolution of the value of

effects of a drug) to the company that manufactures the drug. Even though the company is
obliged to disclose the information by resubmitting it, within two weeks, to the Food and
Drugs Administration (FDA), in practice, the companies delay the resubmission of the in-
formation. For example, in the case of Avandia, the Times magazine asserts ”Congressional
reports revealed that GSK sat on early evidence of the heart risks of its drug, and that the
FDA knew of the dangers months before it informed the public” (Times, August 12, 2010)

28The case of Glaxo’s diabetes drug Avandia is paradigmatic. Its sales were $2.5-billion
in 2006; however, following a study published in the New England Journal of Medicine in
2007 that linked the drug’s use to an increased risk of heart attack, sales plummeted to
$9.5-million in 2012. In 2012, the U.S. Justice Department announced GSK had agreed to
plead guilty and pay a $3 billion fine, in part for withholding the results of two studies of the
cardiovascular safety of Avandia between 2001 and 2007 (New York Times, July 2, 2012).
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the patent and beliefs evolves according to

V̇1(t) = −ρ
(
V − V1(t)

)

ṗt = κ(p̄ − pt) + (μ + ζt)pt(1 − pt).

In principle, this may seem a very complicated problem given the non-stationarity

of the setup. However, when λ1 = 0, the decision of the low type man-

ager to disclose his information is a monotone optimal stopping problem,

which means that the myopic stopping rule is optimal (Ross, 1971). Ac-

cordingly, we have that the manager does not disclose negative information

if ptV1(t) > μθ and discloses with positive probability if ptV1(t) = μθ. Let us

define T∗ := inf{t > 0 : ptV1(t) = μθ} and T∗∗ := inf{t > 0 : V1(t) = μθ},

where

T∗∗ = T −
1

ρ
ln

(
V − V

V − μθ

)

For all t ∈ (T∗, T∗∗) the conditions ptV1(t) = μθ is satisfied. This means that

d(ptV1(t))/dt = 0 so the equilibrium condition to determine ζt is

ṗtV1(t) + ptV̇1(t) = 0.

which reduces to

κ
p̄V1(t)

μθ
+ (μ + ζt)(1 − pt) = κ + ρ

(
ptV

μθ
− 1

)

.

Hence, we have that ζt is given by

ζt =
1

1 − pt

[

κ − ρ +
1

μθ

(
ρptV − κp̄V1(t)

)
]

− μ. (35)

The equilibrium condition ptV1(t) ≥ μθ can be satisfied for all t ≤ T if and

only if V ≥ μθ. Otherwise, there is T∗∗, as defined above, such that a low

type manager discloses his private information with probability 1 when he is

close to the expiration of the patent. Summarizing our previous discussion,
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the equilibrium disclosure strategy is:

ζt =







0 if t ≤ T∗

1
1−pt

[

κ − ρ + 1
μθ

(
ρptV − κp̄V1(t)

)]

− μ if T∗ < t < T∗∗

∞ if t ≥ T∗∗,

(36)

where ζt = ∞ indicates immediate disclosure. This means that, conditionally

on not disclosing negative information, pt = 1 for t ≥ T∗. Figure 4 provides

a numerical example showing the dynamics of disclosure in this case. Two

elements are worth noting. First, disclosure tends to cluster around expiration.

Furthermore, the longer the patent the lower the disclosure rate (i.e., the longer

the disclosure delay). This intuitive result, which we believe is new to the

literature, suggests that from a social point of view patent length should be

shorter the more socially relevant the disclosures of the manufacturer are.

0 1.5 2.5
0.4

0.6

0.8

1

time

M
ar

k
et

b
el

ie
fs

in

ab
se

n
ce

of
d
is

cl
os

u
re

0 1 1.5 2 2.5
0

50

100

150

200

time

ζt

T∗ T∗∗ T1 T2 T3

T∗ T∗∗

Figure 4: Evolution of beliefs in absence of disclosure and intensity of disclosure of
negative information for different patent length. Here, T1 = 1, T2 = 2 and T3 = 3 are
three possible patent length T . T∗ and T ∗ correspond to the thresholds for the case with
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7 Concluding Remarks

This paper studies a model of dynamic costly disclosure in which we incorpo-

rate the costs of delaying the disclosure of negative information, in particular

litigation costs. The introduction of litigation costs introduces a signaling

component to the disclosure environment. The market reacts positively to

delays when they expect negative news to be disclosed. As we discuss in the

introduction, the disclosure of bad news crowds out the disclosure of good

news.

Our model is flexible enough to allow for many extensions and applications.

For example, we analyze the effect that patent length has on the rate of disclo-

sure of a monopolist. Thus, it provides a new potential cost associated with

a strong patent that, to the best of our knowledge, is novel to the literature.

The model is also flexible enough to incorporate endogenous monitoring by a

rent seeking agent.

That being said, our model has several limitations. First, the state of

nature is binary. One could consider the possibility of asset values that are

continuously distributed. Second, we have modeled the public information as a

Poisson process. An interesting but involved extension would be to consider a

public information process that follows a Brownian motion whose drift depends

on the state of nature, along the lines of the information structure considered

by Daley and Green (2012). Again, this would allow for a more realistic

characterization of stock returns.
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Appendix (Not For Publication)

A When The Cost of Disclosure Is Priced By

the Market

The manager’s objective function in equation (2) implicitly assumes that the cost of disclo-

sure is borne by the manager. Our model can be extended to consider the cost of disclosure

as a negative cash flow borne by the firm’s shareholders. For simplicity we present a sketch

of this extension only for the case without public news (that is, μ = 0) and no litigation risk.

Suppose that the manager compensation is a combination of the future stock prices and the

firm’s future cash flows, and suppose this combination is linear. Then, the manager’s payoffs

is

Ut(d, σ) := Ed





∫ τM

t

e−ρ(s−t)Psds+ e−ρτMVτM
− C

∑

t≤s<τM

e−ρ(s−t)σs

∣
∣
∣Ft, Vt



 ,

which is equivalent up to some affine transformation to

U t(d, σ) := pt + Ed





∫ ∞

t

e−r(s−t)Psds− ηC
∑

t≤s

e−r(s−t)σs

∣
∣
∣Ft, Vt



 ,

where η := (r+κ)/γ. Therefore, the equilibrium is the same if we take the objective function

of the manager to be

Ut(d, σ) := Ed





∫ ∞

t

e−r(s−t)Psds− ηC
∑

t≤s

e−r(s−t)σs

∣
∣
∣Ft, Vt



 , (37)

In section 2 we assumed that the cost of disclosure is borne by the manager, when this is

the case, the share price is Pt = Et(VτM
). This is no longer true when the cost of disclosure

is borne by shareholders. In this latter case, the price is

Pt = Ed



VτM
− C

∑

t≤s<τM

σs

∣
∣
∣Ft



 =
κ

γ + κ
p̄+

γ

γ + κ
pt − Ed



C
∑

t≤s

e−γsσs

∣
∣
∣Ft



 (38)
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Direct computation shows that29

ψ(p, p∗) := Ed




∑

t≤s

e−γsσs

∣
∣
∣Ft



 =

(
λ

γ+λ
+ γ

γ+λ
p∗

)(
p∗−p̄
p−p̄

) γ
κ

1 −
(

λ
γ+λ

+ γ
γ+λ

p∗

)(
p∗−p̄
1−p̄

) γ
κ

.

Thus, the price is

Pt = q(pt, p∗) =
κ

γ + κ
p̄+

γ

γ + κ
pt − ψ(pt, p∗)C, (39)

where we make the dependence of the price on the disclosure threshold p∗ explicit. We can

write the manager’s objective function as

Ut(d, σ) := Ed





∫ ∞

t

e−r(s−t)q(ps, p∗)ds− ηC
∑

t≤s

e−r(s−t)σs

∣
∣
∣Ft, Vt



 , (40)

The value function satisfies the following HJB equations

rU1(p) = q(p, p∗) + κ(p̄− p)U ′
1(p) + λ0[U0(p) − U1(p)]

rU0(p) = q(p, p∗) + κ(p̄− p)U ′
0(p) + λ1[U1(p) − U0(p)]

subject to the same boundary conditions as in the baseline case. We can solve the HJB

equations following the same computations as the ones in appendix B. The value function

U is given by

U0(p) = U1(p) −
r

r + λ1

(
p∗ − p̄

p− p̄

)1+ r
κ (

U1(1) − ηC
)

U1(p) =

∫ T (p,p∗)

0

e−rtq
(
φt(p), p∗

)
dt+ δ(p, p∗)

(

U1(1) − ηC
)

,

where

δ(p, p∗) :=

(
p∗ − p̄

p− p̄

) r
κ
[
rp̄+ κp̄

r + κp̄
+
r(1 − p̄)

r + κp̄

p∗ − p̄

p− p̄

]

.

q(pt, p∗) and q(p∗, p∗) are decreasing functions of p∗ (ψ is increasing in p∗). This means

that it is possible to replicate the steps in the proof of Propositions 3 and 4 to get an

29The derivation of ψ uses the following recursive representation of ψ:

ψ(p, p∗) = e−γT (p,p∗)

(

p∗ψ(1, p∗) +
λ1

λ1 + γ
ψ(1, p∗)

)

= e−γT (p,p∗)Λ(p∗)ψ(1, p∗),

where T (p, p∗) is defined as inf{t > 0|pt = p∗, p0 = p}.
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analogous characterization of the equilibrium.

B Proofs of Section 2

Proof of Proposition 1

Let ∆(p) := U1(p) − U0(p), which satisfies

(r + κ)∆(p) = f(p)∆′(p) + μ[U0(p) − U0(0)]. (41)

Differentiating the HJB equation we get

rU ′
0(p) = 1 + f ′(p)U ′

0(p) + f(p)U
′′

0 (p) + λ1∆
′(p) − μU ′

0(p) (42)

rU ′
1(p) = 1 + f ′(p)U ′

1(p) + f(p)U
′′

1 (p) − λ0∆
′(p). (43)

The proof is a direct consequence of the following two lemmas.

Lemma 2. Suppose there is p1 ≥ p∗ such that U ′
1(p

1) = 0, then U ′
0(p

1) > 0.

Proof. Evaluating (41) at p∗ we get that U ′
0(p∗) > 0. If U ′

0 is nondecreasing for p > p∗

we are done. Suppose that U ′
0(p) is decreasing for some p > p∗, then there must be some

p > p∗ such that U ′
0(p) = 0. Let p0 = inf{p ≥ p∗ : U ′

0(p) < 0}. We have two possibilities,

p0 ≥ p1 or p0 < p1. Suppose that p0 < p1, if this is the case, using equation (42), we get

−f(p0)U ′′
0 (p0) = 1 + λ1U

′
1(p

0) > 0. This means that U ′′
0 (p0) > 0 which contradicts the

fact that p0 = inf{p > p∗ : U ′
0(p) < 0} so it must be the case that p0 ≥ p1. But then, by

definition of p0, we have U ′
0(p

1) > 0.

Lemma 3. Suppose that U ′
1(p∗) ≥ 0, then U1 is nondecreasing for all p ≥ p∗.

Proof. Suppose that U1(p) is decreasing in some interval, then there is p such that U ′
1(p) = 0.

Let’s define p1 = inf{p > p∗ : U ′
1(p) < 0}. Then, by (43) we have that

−f(p1)U ′′
1 (p1) = 1 + λ0U

′
0(p

1).

By lemma 2 we have U ′
0(p

1) > 0. This means that U ′′
1 (p1) > 0 which is a contradiction with

p1 = inf{p > p∗ : U ′
1(p) < 0}.

Proof Proposition 1. From the boundary condition we have U1(p) = U1(1) − c; moreover,

U1 is nondecreasing by lemma 3. Hence, U1(p) ≥ U1(1) − c for all p > p∗.
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Proof of Proposition 2

Lemma 4. Let p1
∗ < p2

∗ be two equilibrium thresholds, then U1(1|p
1
∗) > U1(1|p

2
∗).

Proof. The solution to the HJB equation satisfies (Davis, 1993, Theorem 32.10, p. 94)

U1(1) = E





∫ ∞

0

e−rtptdt− c
∑

t≥0

e−rtdt





= E





∫ ∞

0

e−rtE(Vt

∣
∣Ft)dt− c

∑

t≥0

e−rtdt





=

∫ ∞

0

e−rtE(Vt)dt− cE




∑

t≥0

e−rtdt





=

∫ ∞

0

e−rtE(Vt)dt−
δ

1 − δ
c,

where δ := E(e−rτd) and τd := inf{t ≥ 0 : dt = 1}. Let τ1
d and τ2

d be the first disclosure

times for p1
∗ and p2

∗, respectively. To show that U1(1|p
1
∗) > U1(1|p

2
∗) it is sufficient to show

that τ1
d ≥ τ2

d and that τ1
d (ω) > τ2

d (ω) for a positive measure set of states ω.

Let τN := inf{t ≥ 0 : dNt = 1} and let T i
∗, i = 1, 2 be given by φT i

∗

= pi
∗ where φt is the

solution to the differential equation

dpt

dt
= κ(p̄− pt) + μpt(1 − pt), p0 = 1.

By construction we have T 2
∗ < T 1

∗ . We consider several cases:

1. If τN < T 2
∗ then τ2

d = τ1
d .

2. If τN > T 2
∗ and VT 2

∗

= 1 then τ2
d = T 2

∗ < τ1
d .

3. If τN > T 2
∗ and VT 2

∗

= 0 we have several sub-cases. Let σ = inf{t > T 2
∗ : Vt = 1}.

(a) If τN < T 1
∗ then τ2

d = τ1
d = inf{t ≥ τN : Vt = 1}.

(b) If τN > T 1
∗ and σ < T 1

∗ then τ2
d = σ < T 1

∗ ≤ τ1
d .

(c) If τN > T 1
∗ and σ > T 1

∗ then τ2
d = τ1

d = σ.

According, τ1
d ≥ τ2

d a.s. and Pr(τ1
d > τ2

d ) > 0 which means that E(e−rτ1
d ) < E(e−rτ2

d ) and

U1(1|p
1
∗) > U1(1|p

2
∗).

Lemma 5. Suppose that U ′
1(p∗|p∗) ≥ 0 and U1(1|p∗)−c ≥ 0, then U1(p|p∗) is non increasing

in p∗.
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Proof. Following the same computation as in (Davis, 1993, Theorem 32.10, p. 94) we can

integrate the HJB equation to get

U0(pt) =

∫ T∗

t

e−(r+λ1+μ)(s−t)
(

ps + λ1U1(ps) + μU0(0)
)

ds+ e−(r+λ1+μ)(T∗−t)U0(0)

U1(pt) =

∫ T∗

t

e−(r+λ0)(s−t)
(

ps + λ0U0(ps)
)

ds+ e−(r+λ0)(T∗−t)[U1(1) − c].

where T∗ is the time it gets for beliefs to reach p∗ in absence of any shock. Differentiating

with respect to p∗ we get

∂

∂p∗
U0(pt) =

∫ T∗

t

e−(r+λ1+μ)(s−t)
(

λ1
∂

∂p∗
U1(ps) + μ

∂

∂p∗
U0(0)

)

ds+ e−(r+λ1+μ)(T∗−t) ∂

∂p∗
U0(0)

+
[

e−(r+λ1+μ)(T∗−t)
(

p∗ + λ1U1(p∗) + μU0(0)
)

− (r + λ1 + μ)e−(r+λ1+μ)(T∗−t)U0(p∗)
] ∂T∗
∂p∗

∂

∂p∗
U1(pt) =

∫ T∗

t

e−(r+λ0)(s−t)λ0
∂

∂p∗
U0(ps)ds+ e−(r+λ0)(T∗−t) ∂

∂p∗
U1(1)

+
[

e−(r+λ0)(T∗−t)
(

p∗ + λ0U0(p∗)
)

− (r + λ0)e
−(r+λ0)(T∗−t)U1(p∗)

] ∂T∗
∂p∗

Noting that U1(p∗) = U1(1) − c and U0(p∗) = U0(0) = λ1[U1(1) − c]/(r + λ1)

∂

∂p∗
U0(pt) =

∫ T∗

t

e−(r+λ1+μ)(s−t)
(

λ1
∂

∂p∗
U1(ps) + μ

∂

∂p∗
U0(0)

)

ds+ e−(r+λ1+μ)(T∗−t) ∂

∂p∗
U0(0)

+ e−(r+λ1+μ)(T∗−t)p∗
∂T∗
∂p∗

(44)

∂

∂p∗
U1(pt) =

∫ T∗

t

e−(r+λ0)(s−t)λ0
∂

∂p∗
U0(ps)ds+ e−(r+λ0)(T∗−t) ∂

∂p∗
U1(1)

+ e−(r+λ0)(T∗−t)

[

p∗ −
r(r + λ1 + λ0)

r + λ1
U1(p∗)

]
∂T∗
∂p∗

. (45)

Evaluating the HJB equation at p∗ we get

p∗ −
r(r + λ1 + λ0)

r + λ1
U1(p∗) = −f(p∗)U

′
1(p∗)
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which is greater than or equal to zero if U ′
1(p∗) ≥ 0. Evaluating (44) and (45) at T∗ we get

∂

∂p∗
U0(p∗) =

λ1

r + λ1

∂

∂p∗
U1(1) + p∗

∂T∗
∂p∗

∂

∂p∗
U1(p∗) =

∂

∂p∗
U1(1) +

[

p∗ −
r(r + λ1 + λ0)

r + λ1
U1(p∗)

]
∂T∗
∂p∗

Hence, using that U1(1) is decreasing in p∗ (Lemma 4) and ∂T∗/∂p∗ < 0, we get that

U0(p∗) = U0(0) and U1(p∗) are also decreasing in p∗. Then, by working backward from

t = T∗, it is straightforward that (44) and (45) must be negative for all t ≤ T∗ and hence

for all p ≥ p∗.

Lemma 6. Suppose that U1(1|p∗) − c ≥ 0, then U ′
1(p∗|p∗) = 0 ⇒ ∂

∂p∗

U ′
1(p∗|p∗) > 0.

Proof. Rearranging the HJB equation we can write

U ′
1(p|p∗) =

rU1(p|p∗) − p− λ0[U0 (p|p∗) − U1(p|p∗)]

f(p)

Evaluating at p = p∗ and using the boundary conditions, equations (??) and (??), yields

U ′
1(p∗|p∗) =

rU1(p∗|p∗) − p∗ + U1(p∗|p∗)
rλ0

r+λ1

f(p∗)

=

r(r+κ)
r+λ1

U1(p∗|p∗) − p∗

f(p∗)
(46)

Now, we can show that

U ′
1(p∗|p∗) = 0 ⇒

∂

∂p∗
U ′

1(p∗|p∗) > 0.

Differentiating equation (46) with respect to p∗ yields

∂

∂p∗
U ′

1(p∗|p∗) =

r(r+κ)
r+λ1

∂U1(p|p∗)
∂p∗

∣
∣
∣
p=p∗

− 1

f(p∗)
+
f ′(p∗)

f(p∗)
U ′

1(p∗|p∗)

=

r(r+κ)
r+λ1

∂U1(p|p∗)
∂p∗

∣
∣
∣
p=p∗

− 1

f(p∗)
> 0

But from Lemma 5 we know that ∂U1(p|p∗)
∂p∗

< 0. This along with f(p∗) < 0 proves the

lemma.
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Proof of Proposition 2. Suppose there exist p−∗ < p+
∗ such that

U ′
1

(
p−∗ |p

−
∗

)
= 0

U1

(
1|p+

∗

)
− c = 0.

A direct consequence of Lemma 6 is that U ′
1 (p∗|p∗) crosses 0 only once. Thus, U ′

1 (p∗|p∗) ≥ 0

for p∗ ≥ p−∗ , and U ′
1 (p∗|p∗) < 0 for p∗ < p−∗ . Moreover, from Lemma 5 we have that

U1 (p∗|p∗)− c ≥ 0 for all p∗ ≤ p+
∗ . Hence, p∗ satisfies conditions (12) and (13) if and only if

p∗ ∈ [p−∗ , p
+
∗ ].

Proof of Proposition 3

Proof. We divide the proof of Proposition 3 in two steps. In step 1, we show that the

functions in the proposition solve the HJB equation with the required boundary conditions.

In step 2, we show that the solution constitutes an equilibrium.

Step 1:

In the absence of any disclosure, the beliefs at time t are given by

φt(p0) = p̄+ e−κt(p0 − p̄).

Let’s define T (p; p∗) as the time that it takes the beliefs to reach p∗ give that current beliefs

are p. That is,

T (p; p∗) = −
1

κ
log

(
p∗ − p̄

p− p̄

)

,

where ∂T (p;p∗)
∂p

> 0 and ∂T (p;p∗)
∂p∗

< 0. The results in Davis (1993, pp. 92-93) imply that the

solution to the HJB equation (??)-(??) satisfies

U0(p|p∗) =

∫ T (p;p∗)

0

e−rtφt(p)dt+ e−rT (p;p∗)
[

Pr(VT (p;p∗) = 0|V0 = 0)U0(p∗|p∗)

+Pr(VT (p;p∗) = 1|V0 = 0)U1(p∗|p∗)
]

U1(p|p∗) =

∫ T (p;p∗)

0

e−rtφt(p)dt+ e−rT (p;p∗)
[

Pr(VT (p;p∗) = 0|V0 = 1)U0(p∗|p∗)

+Pr(VT (p;p∗) = 1|V0 = 1)U1(p∗|p∗)
]

.

Replacing Pr(VT (p;p∗) = j|V0 = i) for i, j ∈ {0, 1}, and using the boundary conditions, we

can write the manager’s expected payoff as
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U0(p|p∗) =

∫ T (p;p∗)

0

e−rtφt(p)dt+ e−rT (p;p∗)

[
rp̄+ λ1

r + λ1
−

rp̄

r + λ1
e−κT (p;p∗)

](

U1(1|p∗) − c
)

(47)

U1(p|p∗) =

∫ T (p;p∗)

0

e−rtφt(p)dt+ e−rT (p;p∗)

[
rp̄+ λ1

r + λ1
+
r(1 − p̄)

r + λ1
e−κT (p;p∗)

](

U1(1|p∗) − c
)

.

(48)

Using equation (48) we can write U1(1|p∗) as

U1(1|p∗, κ) =

∫ T (1;p∗)

0
e−rtφt(1)dt

1 − δ(1)
−

δ(1)

1 − δ(1)
c, (49)

where

δ(1) = e−rT (1;p∗)
[rp̄+ κp̄

r + κp̄
+

r(p∗ − p̄)

r + κp̄
︸ ︷︷ ︸

r(1−p̄)
r+κp̄

e−κT (1;p∗)

]

.

The first term in (49) can be written as

UND(1)

1−δ(1)
︷ ︸︸ ︷

1 − e−rT (1;p∗)U
ND(p∗)

UND(1)

1 − δ(1)
= UND(1).

Hence,

U1(1|p∗) = UND(1) −
δ(1)

1 − δ(1)
c, (50)

Step 2:

The only step left is to show that (12) and (13) imply U1(p) ≥ U1(1) − c for all p > p∗ so a

threshold policy is optimal. We first show that (12) and (13) imply U ′
1(p) ≥ 0 for all p > p∗.

The derivative of U1 is given by

U ′
1(p) = e−rT (p;p∗)Φ(p)

∂T (p; p∗)

∂p
+

∫ T (p;p∗)

0

e−(r+κ)tdt (51)

where

Φ(p) := p∗ − re−rT (p;p∗)

[
rp̄+ λ1

r + λ1
+

(1 − p̄)(r + κ)

r + λ1
e−κT (p;p∗)

](

U1(1) − c
)

.
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From here we get that U ′
1(p∗) ≥ 0 if and only if Φ(p∗) ≥ 0. Moreover, U1(1)− c > 0 implies

Φ′(p) > 0, which means that Φ(p) ≥ 0 for all p > p∗. Accordingly, U ′
1(p) ≥ 0 for all p > p∗,

and

U1(p) = U1(p∗) +

∫ p

p∗

U ′
1(y)dy = U1(1) − c+

∫ p

p∗

U ′
1(y)dy > U1(1) − c.

Proof of Proposition 4

Proof of Proposition 4. We show that if the cost of disclosure satisfies the conditions in the

proposition then exist p−∗ , p
+
∗ ∈ (p̄, 1) with the required properties.

Claim 1: If c < r+λ1

r(r+κ) , then there is a threshold p+
∗ ∈ (p̄, 1) such that U1 (1|p+

∗ ) − c = 0.

First, from equation (48) we have that U(1|p̄) = UND(1). Hence, U(1|p̄) − c > 0 if

and only if

c <
λ1 + r

r(r + κ)
.

Second, U(1|1 − ǫ) − c < 0 for ǫ close to zero. Let

β(ǫ) := e−rT (1;1−ǫ)

[
rp̄+ λ1

r + λ1
+
r(1 − p̄)

r + λ1
e−κT (1;1−ǫ)

]

.

Using equation (48) we get that

(1 − β(ǫ))
[
U(1|1 − ǫ) − c

]
< T (1; 1 − ǫ) − β(ǫ)c,

where T (1; 1− ǫ)− β(ǫ)c < for ǫ close to zero. Hence, by continuity there exist p+
∗ ∈

(p̄, 1) such that U1 (1|p+
∗ ) − c = 0. Moreover, equation (51) implies U ′

1 (p+
∗ |p

+
∗ ) > 0.

Claim 2: If c < r+λ1

r(r+κ) (1 − p̄), then there there is p−∗ < p+
∗ such that U ′(p−∗ |p

−
∗ ) = 0.

First, we verify that limp∗↓p̄ U
′
1(p∗|p∗) < 0. Using the HJB equation

U ′
1(p∗|p∗) =

r(r+κ)
r+λ1

U1(p∗|p∗) − p∗

κ(p− p∗)

Noting that limp∗↓p̄ U1(p∗|p∗) = UND
1 (1) − c, it suffices to show that

r(r + κ)

r + λ1

(
UND

1 (1) − c
)
− p̄ > 0,

which, after straightforward algebra, is satisfied if and only if c < r+λ1

r(r+κ) (1 − p̄).

Second, we verify that limp∗↑1 U
′
1(p∗|p∗) > 0. When p∗ ↑ 1 the firm starts disclosing

infinitely often. Hence, the cost of disclosure grows without bound. Moreover, the
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benefit of disclosing is bounded. Accordingly

lim
p∗↑1

r(r + κ)

r + λ1
U1(p∗|p∗) − p∗ < 0

so, from the HJB equation, limp∗↑1 U
′
1(p∗|p∗) > 0. By continuity there is p−∗ ∈ (p̄, 1)

with the required properties. Moreover, U ′
1 (p+

∗ |p
+
∗ ) > 0 implies that p−∗ < p+

∗ .

C Proofs of Section 4

C.1 Permanent Shocks

C.1.1 Equilibrium with disclosure of good news

The value functions obey

rU1(p) = p+ f(p)U ′
1(p) + λ0[U0(p) − U1(p)] (52)

rU0(p) = p− μθ + f(p)U ′
0(p) − μU0(p) (53)

With boundary conditions

U1(p) = U1(1) − c, for all p ≤ p∗ (54)

U0 (p) = 0, for p ≤ p∗ (55)

Lemma 7. The solution to the HJB equation is

U0(p) =

∫ T (p)

0

e−(r+μ)t
(
φt(p) − μθ

)
dt

U1(p) =

∫ T (p)

0

e−(r+λ0)t

(
μ− λ0e

−(μ−λ0)t

μ− λ0
φt(p) −

1 − e−(r+μ)(T (p)−t)

r + μ
λ0μθ

)

dt+ e−(r+λ0)T (p)
(
U1(1) − c

)
.

U1(p) = U1(1) − c, for all p ≤ p∗ (56)

U0 (p) = 0, for p ≤ p∗ (57)
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Proof.

U1(p) =

∫ T (p)

0

e−(r+λ0)t (φt(p) + λ0U0(φt(p))) dt+ e−(r+λ0)T (p)
(
U1(1) − c

)

=

∫ T (p)

0

e−(r+λ0)t

(

φt(p) + λ0

∫ T (p)

t

e−(r+μ)(s−t)
(
φs(p) − μθ

)
ds

)

dt+ e−(r+λ0)T (p)
(
U1(1) − c

)

The term accompanying μθ follows by simple integration. For the term accompanying φt(p)

we change the order of integration to get

∫ T (p)

0

∫ T (p)

t

e−(r+λ0)te−(r+μ)(s−t)φs(p)dsdt =

∫ T (p)

0

∫ T (p)

t

e(μ−λ0)te−(r+μ)sφs(p)dsdt

=

∫ T (p)

0

e−(r+μ)sφs(p)

∫ s

0

e(μ−λ0)tdtds

=

∫ T (p)

0

e−(r+λ0)sφs(p)
1 − e−(μ−λ0)s

μ− λ0
ds.

Hence,

∫ T (p)

0

e−(r+λ0)t

(

φt(p) + λ0

∫ T (p)

t

e−(r+μ)(s−t)φs(p)ds

)

dt =

∫ T (p)

0

e−(r+λ0)t
μ− λ0e

−(μ−λ0)t

μ− λ0
φt(p)dt

Lemma 8. Assume U ′
1(p∗|p∗) ≥ 0 and U1(1|p∗) − c ≥ 0, then ∂

∂p∗

U(1|p∗) < 0, for all

p∗ ∈ [μθ, 1].

Proof of Lemma 8. We first note that μ−λ0e−(µ−λ0)t

μ−λ0
φt(1) = 1. Hence, using Lemma 14 the

two hypotheses become

U1 (1|p∗) − c =

∫ T

0

e−(r+λ0)t

1 − e−T (r+λ0)

(

1 −
1 − e−(r+μ)(T−t)

r + μ
λ0μθ

)

dt−
c

1 − e−(r+λ0)T
≥ 0,

(58)

and

U ′
1(p∗|p∗) =

(r + λ0) (U1 (1|p∗) − c) − p∗

f (p∗)
≥ 0 ⇒ (r + λ0) (U1 (1|p∗) − c) − p∗ ≤ 0 (59)

where T =
ln

λ0−µ+p∗µ

p∗λ0

λ0−μ
, or equivalently

p∗ =
λ0 − μ

eT (λ0−μ)λ0 − μ
(60)
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Now differentiating (58) with respect to T yields

∂ (U1 (1|p∗) − c)

∂T
= − (r + λ0)

e−T (r+λ0)

1 − e−T (r+λ0)
(U1 (1|p∗) − c)

+
e−(r+λ0)T −

∫ T

0
e−(r+λ0)t−(r+μ)(T−t)λ0μθdt

1 − e−T (r+λ0)

⇒
∂ (U1 (1|p∗) − c)

∂T
(

e−T (r+λ0)

1 − e−T (r+λ0)
)−1 = − (r + λ0) (U1 (1|p∗) − c)

+1 −

∫ T

0

e−(r+λ0)t−(r+μ)(T−t)

e−(r+λ0)T
λ0μθdt

≥ −p∗ + 1 −

∫ T

0

e−(r+λ0)t−(r+μ)(T−t)

e−(r+λ0)T
λ0μθdt

where the last inequality follows from (59) . Now, replacing p∗ by (60), yields

∂ (U1 (1|p∗) − c)

∂T
(

e−T (r+λ0)

1 − e−T (r+λ0)
)−1 ≥ 1 −

λ0 − μ

eTλ0−μTλ0 − μ

−

∫ T

0

e−(r+λ0)t−(r+μ)(T−t)

e−(r+λ0)T
λ0μθdt

= λ0

(

1 − eT (λ0−μ)
) μθ

(
eT (λ0−μ)λ0 − μ

)
− (λ0 − μ)

(
eT (λ0−μ)λ0 − μ

)
(λ0 − μ)

Now notice that

λ0

(

1 − eT (λ0−μ)
) μθ

(
eT (λ0−μ)λ0 − μ

)
− (λ0 − μ)

(
eT (λ0−μ)λ0 − μ

)
(λ0 − μ)

= 0 ⇔ T = 0 or T =
ln λ0−μ+μ2θ

λ0μθ

λ0 − μ
.

and

lim
T→0

∂

[

λ0

(
1 − eT (λ0−μ)

) μθ(eT (λ0−µ)λ0−μ)−(λ0−μ)

(eT (λ0−µ)λ0−μ)(λ0−μ)

]

∂T
= λ0 (1 − μθ) > 0

This means that ∂(U1(1|p∗)−c)
∂T

is positive for all T ∈ [0,
ln

λ0−µ+µ2θ

λ0µθ

λ0−μ
]. This implies that

∂(U1(1|p∗)−c)
∂p∗

is negative for all p∗ ∈ [ μθ
1+μθ

, 1] k [μθ, 1].

Lemma 9. Suppose that U ′
1 (p∗|p∗) ≥ 0 and U1(1|p∗)− c ≥ 0, then Uv (p|p∗) is non increas-

ing in p∗.

Proof of Lemma 9. This follows directly upon adapting the proof of Lemma 9.

Lemma 10. Suppose that U1 (1|p∗) − c ≥ 0, then U ′
1 (p∗|p∗) = 0 ⇒ ∂

∂p∗

U ′
1 (p∗|p∗ ) > 0.

Proof of Lemma 10. This follows directly from adapting the proof of Lemma 10.

56



Lemma 11. In any equilibrium with good news disclosure, the disclosure threshold must be

greater or equal than μθ.

Proof of Lemma 11. Suppose there is an equilibrium with disclosure threshold p∗ < μθ.

The value function of the low type is

U0(p) =

∫ T (p∗)

0

e−(r+μ)t
(
φt(p) − μθ

)
dt,

so for p < p∗ we have U0(p) < 0. This means that the low type would have incentives to

disclose its type, which contradicts the fact that this is an equilibrium with disclosure of

good news.

Lemma 12. Suppose there exist p−∗ ≤ p+
∗ , such that

U ′
1

(
p−∗ |p

−
∗

)
= 0

U ′
1

(
1|p−∗

)
− c = 0

p+
∗ ≥ μθ

then p∗ is an equilibrium threshold if and only if p∗ ∈ [max (p−∗ , μθ) , p
+
∗ ].

Proof of Lemma 12. This follows directly after slightly adapting the proof of Proposition 1

and using Lemma 11

Lemma 13. (i) A necessary and sufficient condition for the existence of equilibria with

good news is that c ≤ c where

U1 (1|μθ) − c = 0.

Also there is c such that

p−∗ = μθ

U ′
1

(
p−∗ |p

−
∗

)
= 0.

where

c = (1 − e−(r+λ0)T )

(
r + μ− (r + μ+ λ0)μθ

(r + μ) (r + λ0)
+

λ0μθ

(r + μ) (λ0 − μ)

1 − e(λ0−μ)T

1 − e(r+λ0)T

)

c =
e

(

ln
λ0−µ+µ2θ

λ0µθ

)

r+λ0
λ0−µ

(r + μ− λ0μθ) − (μθr + μ− λ0)

(r + λ0) (r + μ)
e

(

ln
λ0µθ

(λ0−µ+µ2θ)

)

r+λ0
λ0−µ

.

Proof of Lemma 13. Observe that

U1 (1|p∗) − c = 0 ⇒ U ′
1 (p∗|p∗) ≥ 0.
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Also

U ′
1 (p∗|p∗) ≤ 0 ⇒ U1 (1|p∗) − c ≥ 0.

Now recall that p+
∗ is defined by U1 (1|p+

∗ ) − c = 0, then from Lemma 8 and the Implicit

Function Theorem we have that
∂p+

∗

∂c
< 0. Defining c by

U1 (1|μθ) − c = 0.

we have that p+
∗ ≥ μθ for all c ≤ c. Moreover, the fact that U ′

1 (p+
∗ |p

+
∗ ) > 0 implies that

either U ′
1(p∗|p∗) > 0 in the interval [μθ, p+

∗ ] or it crosses zero at most once and from below

at some p−∗ ≤ p+
∗ . Hence for any c < c there must be a unique interval of equilibrium

thresholds: [min (μθ, p−∗ ) , p+
∗ ]. The value of c can be computed as

c =
e

(

ln
λ0−µ+µ2θ

λ0µθ

)

r+λ0
λ0−µ

(r + μ− λ0μθ) − (μθr + μ− λ0)

(r + λ0) (r + μ)
e

(

ln
λ0µθ

(λ0−µ+µ2θ)

)

r+λ0
λ0−µ

.

Finally, we denote by c the value of c such that p−∗ = μθ, where

U ′
1 (μθ|μθ) = 0

Using the HJB equation, we can verify that

U ′
1(μθ|μθ) = 0 =⇒ U1(μθ|μθ) = U1(1|μθ) − c =

μθ

r + λ0
,

where

U1(1|μθ) =

∫ T (μθ)

0

e−(r+λ0)t

(
μ− λ0e

−(μ−λ0)t

μ− λ0
φt(1) −

1 − e−(r+μ)(T (p)−t)

r + μ
λ0μθ

)

dt+e−(r+λ0)T (μθ) μθ

r + λ0

The value of c can thus be computed as

c = (1 − e−(r+λ0)T )

(
r + μ− (r + μ+ λ0)μθ

(r + μ) (r + λ0)
+

λ0μθ

(r + μ) (λ0 − μ)

1 − e(λ0−μ)T

1 − e(r+λ0)T

)

where T =
ln

λ0−µ+µ2θ

µθλ0

λ0−μ
.

C.1.2 Equilibrium with disclosure of bad news

The value functions obey
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rU1(p) = p+ f(p)U ′
1(p) + λ0[U0(p) − U1(p)] (61)

rU0(p) = p− μθ + f(p)U ′
0(p) − μU0(p) (62)

With boundary conditions

U1(p∗) =
μθ

r + λ0
, for all p ≤ p∗ (63)

U0 (p) = 0, for p ≤ p∗ (64)

The time that it takes to reach the threshold is

T =
ln λ0−μ+θμ2

μθλ0

λ0 − μ
.

The value functions can be written as

U1(p) =

∫ T (pt)

0

e−s(r+λ0) (φs(p) + λ0U0(φs (p))) ds+
μθ

r + λ0
e−T (p)(r+λ0)

U0 (p) =

∫ T (pt)

0

e−s(r+μ) (φs (p) − μθ) ds

Lemma 14. The solution to the HJB equation is

U0(p) =

∫ T (p)

0

e−(r+μ)t
(
φt(p) − μθ

)
dt

U1(p) =

∫ T (p)

0

e−(r+λ0)t

(
μ− λ0e

−(μ−λ0)t

μ− λ0
φt(p) −

1 − e−(r+μ)(T (p)−t)

r + μ
λ0μθ

)

dt+ e−(r+λ0)T (p) μθ

r + λ0
.

U1(p) = U1(1) − c, for all p ≤ p∗ (65)

U0 (p) = 0, for p ≤ p∗ (66)

Proof. Identical to Lemma 7.

Lemma 15. There is an equilibrium with bad news if and only if c ≥ ĉ where ĉ is defined

by

U1(1) − ĉ = U1(μθ) =
μθ

r + λ0
, (67)

and the value of ĉ has been computed at the end of the proof of Lemma 13 as c.

Proof of Lemma 15. A necessary and sufficient condition for an equilibrium with disclosure
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of bad news is that the high type does not disclose its type when pt = μθ. This happens if

and only if

U1(1) − c ≤
μθ

r + λ0
. (68)

Noting that U1(1) = A(1, μθ) + δ p∗

r+λ0
, where A and δ are as in the proof of Lemma 16,

does not depend on c we can conclude from (68) that an equilibrium with disclosure of good

news exists if and only if

c ≥ ĉ := U1(1) −
μθ

r + λ0
. (69)

Thus, the definition of ĉ in equation (69) coincides with c computed at the end of Lemma

13.

C.2 Comparing equilibria with good and bad news

Lemma 16. Let Ug
v (p) and U b

v(p) be the value function in an equilibrium with disclosure of

good news and bad news with disclosure threshold p∗ = μθ, respectively. Then, for all p and

for all v ∈ {0, 1} we have that U b
v(p) ≥ Ug

v (p).

Proof. There is nothing to prove for the low type as

Ug
0 (p) = U b

0(p) =

∫ T (p)

0

e−(r+μ)t
(
φt(p) − μθ

)
dt.

Let’s define

A(p, p∗) =

∫ T (p∗)

T (p)

e−(r+λ0)t

(
μ− λ0e

−(μ−λ0)t

μ− λ0
φt(p) −

1 − e−(r+μ)(T (p)−t)

r + μ
λ0μθ

)

dt

δ(p, p∗) = e−(r+λ0)(T (p∗)−T (p))

δ = δ(1, μθ).

We have the following equilibrium condition for an equilibrium with disclosure of bad news.

U b
1(1) − c =

A(1, μθ) − c

1 − δ
≤

μθ

r + λ0
. (70)

Similarly, we have that

Ug
1 (p) =

A(1, μθ) − c

1 − δ
.

Hence,

U b
1(p) − Ug

1 (p) = δ(p, μθ)

[
μθ

r + λ0
−
(
Ug

1 (1) − c
)
]

= δ(p, μθ)

[
μθ

r + λ0
−

A(1, μθ) − c

1 − δ

]

≥ 0,
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where in the last inequality we use (70)

Lemma 17. Let’s define

c := (1 − e−(r+λ0)T )

(
r + μ− (r + μ+ λ0)μθ

(r + μ) (r + λ0)
+

λ0μθ

(r + μ) (λ0 − μ)

1 − e(λ0−μ)T

1 − e(r+λ0)T

)

.

where T = T (μθ) =
ln

λ0−µ+µ2θ

µθλ0

λ0−μ
. Then

1. If c < c, then any equilibria with good news has a threshold strictly greater than μθ.

In particular, p−∗ > μθ.

2. If c < c, then the Pareto dominating equilibrium is the equilibrium with disclosure of

good news and threshold p−∗ > μθ. Alternatively, if c ≥ c then the Pareto dominating

equilibrium is the equilibrium with disclosure of bad news with threshold μθ.

Proof. Let Ug
1 (p|p∗) be the value function in an equilibrium with disclosure of good news

with threshold p∗. Let also p−∗ (c) be the threshold satisfying the smooth pasting condition

Ug′
1 (p∗|p∗) = 0 for a cost of disclosure c. From the proof of Lemma 13 we have that

p−∗ (c) = μθ and Ug
1

(
1|p−∗ (c)

)
− c =

p−

∗
(c)

r+λ0
. Using the implicit function theorem we get

d

dc
p−∗ (c) = −

r + λ0

1 − (r + λ0)∂U
g
1

(
1|p−∗ (c)

)
/∂p∗

< 0,

where we have used that ∂Ug
1

(
1|p−∗ (c)

)
/∂p∗ < 0 (Lemma 8). Hence, the result in 1. follows

from p−∗ (c) = μθ.

For 2. observe that a bad news equilibrium does not exist if c < c (Lemma 15). Hence,

we only need to consider equilibrium with good news, and we know that in this case p−∗
Pareto dominates any other equilibrium (Lemma 9). When c ≤ c, equilibriums with good

news disclosure and bad news disclosure may coexist. However, from Lemma 16,when this

is the case, the equilibrium with disclosure of bad news is Pareto dominant.

C.3 General Case

Proof of Proposition 6

Proof. First, we verify that the disclosure strategy is optimal whenever Vt = 0. By construc-

tion U0(p∗) = U0(0) so the manager is indifferent between disclosing negative information

or not when pt = p∗. Moreover, given that U0(p) is non-decreasing, the manager does not

have incentives to deviate and disclose if pt > p∗.

Next, we verify that the disclosure strategy is also optimal when Vt = 1. The manager

disclosure strategy is optimal if the following two conditions are satisfied
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(1) U1(1) ≥ c.

(2) U1(p) ≥ U1(1) − c for p ≥ p∗.

For (1) note that, by construction (equation (30)),

U1(1) − c =

(

1 +
r

λ1

)

U0(p∗) =

(

1 +
r

λ1

)(
p∗
r

−
μθ

r

r + λ0

r + κ

)

,

which is always positive given the assumption that

p∗ ≥ μθ
r + λ0

r + κ
.

For (2), note that as U1 is increasing (2) is satisfied if and only if U1(p∗) ≥ U1(1) − c. This

happens if and only if

(

1 +
r

λ1

)(
p∗
r

−
μθ

r

r + λ0

r + κ

)

≤
p∗
r

−
μθ

r

λ0

r + κ
,

which is true for all p∗ ≤ μθ.

The only step left is to show that U0, U1 are nondecreasing functions of p. By construc-

tion, U1 is not differentiable at p∗ (is not even continuous). Let U ′
1+(p∗) and U ′′

1+(p∗) be

the right hand first and second derivative, respectively. Similarly, let U ′′
0+(p∗) be the right

hand second derivative of U0 at p∗. Evaluating the HJB equation at p∗ and using the initial

conditions (28) and (29) we get that U ′
0(p∗) = 0 and

U ′
0(p) = 0 ⇒ U ′′

0+(p) =
1 + λ1U

′
1+(p)

−f(p)
. (71)

Using the HJB equation for U1 and the initial conditions we get (28) and (29) we get

f(p∗)U
′
1+(p∗) = 0.

By assumption p∗ > p̂ so f(p∗) < 0 which means that U ′
1+(p∗) = 0. Differentiating the HJB

equation for U1 we get

U ′
1+(p) = 0 ⇒ U ′′

1+(p) =
1 + λ0U

′
0+(p)

−f(p)
. (72)

In particular, we get that U ′
1+(p∗) = 0. Using (71) and (72) we find that U ′′

0+(p∗) > 0

and U ′′
1+(p∗) > 0. Which means that there ǫ > 0 such that U ′

0(p) > 0 and U ′
1(p) > 0

for p ∈ (p∗, p∗ + ǫ).30 Let p̃ := inf{p > p∗|U
′
0(p) < 0 or U ′

1(p) < 0}. As U0 and U1

are continuously differentiable in (p∗, 1), we have that either U ′
0(p̃) = 0 and U ′

1(p̃) ≥ 0

30U1 is twice continuously differentiable for p > p∗.
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or U ′
1(p̃) = 0 and U ′

0(p̃) ≥ 0. Without loss of generality, suppose that U ′
0(p̃) = 0 and

U ′
1(p̃) ≥ 0. Equation (71) implies that U ′′

0 (p̃) > 0. Suppose that U ′
1(p) > 0, then there is

ǫ̃ such that U ′
0(p) ≥ 0 and U ′

1(p) ≥ 0 for all p ∈ (p̃, p̃ + ǫ̃) contradicting the definition of p̃

as the inf{p > p∗|U
′
0(p) < 0 or U ′

1(p) < 0}. On the other hand, if U ′
1(p̃) = 0 then equation

(72) implies that U ′′
1 (p̃) > 0 which means that we can also find ǫ̃ such that U ′

0(p) ≥ 0 and

U ′
1(p) ≥ 0 for all p ∈ (p̃, p̃ + ǫ̃). Hence, U0 must be nondecreasing in [p∗, 1]. A symmetric

argument can be used to show that U1 is nondecreasing.
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